Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomol Screen ; 18(2): 147-59, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23139382

RESUMEN

Fragment screening is becoming widely accepted as a technique to identify hit compounds for the development of novel lead compounds. In neighboring laboratories, we have recently, and independently, performed a fragment screening campaign on the HIV-1 integrase core domain (IN) using similar commercially purchased fragment libraries. The two campaigns used different screening methods for the preliminary identification of fragment hits; one used saturation transfer difference nuclear magnetic resonance spectroscopy (STD-NMR), and the other used surface plasmon resonance (SPR) spectroscopy. Both initial screens were followed by X-ray crystallography. Using the STD-NMR/X-ray approach, 15 IN/fragment complexes were identified, whereas the SPR/X-ray approach found 6 complexes. In this article, we compare the approaches that were taken by each group and the results obtained, and we look at what factors could potentially influence the final results. We find that despite using different approaches with little overlap of initial hits, both approaches identified binding sites on IN that provided a basis for fragment-based lead discovery and further lead development. Comparison of hits identified in the two studies highlights a key role for both the conditions under which fragment binding is measured and the criteria selected to classify hits.


Asunto(s)
Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Bibliotecas de Moléculas Pequeñas , Resonancia por Plasmón de Superficie/métodos , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Integrasa de VIH/química , Integrasa de VIH/genética , Inhibidores de Integrasa VIH/química , Humanos , Unión Proteica/efectos de los fármacos
2.
J Mol Recognit ; 24(2): 220-34, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20540076

RESUMEN

The diuretic drug ethacrynic acid (EA), both an inhibitor and substrate of pi class glutathione S-transferase (GST P1-1), has been tested in clinical trials as an adjuvant in chemotherapy. We recently studied the role of the active site residue Tyr-108 in binding EA to the enzyme and found that the analysis was complicated by covalent binding of this drug to the highly reactive Cys-47. Previous attempts to eliminate this binding by chemical modification yielded ambiguous results and therefore we decided here to produce a double mutant C47S/Y108V by site directed mutagenesis and further expression in Escherichia coli and the interaction of EA and its GSH conjugate (EASG) examined by calorimetric studies and X-ray diffraction. Surprisingly, in the absence of Cys-47, Cys-101 (located at the dimer interface) becomes a target for modification by EA, albeit at a lower conjugation rate than Cys-47. The Cys-47 → Ser mutation in the double mutant enzyme induces a positive cooperativity between the two subunits when ligands with affinity to G-site bind to enzyme. However, this mutation does not seem to affect the thermodynamic properties of ligand binding to the electrophilic binding site (H-site) and the thermal or chemical stability of this double mutant does not significantly affect the unfolding mechanism in either the absence or presence of ligand. Crystal structures of apo and an EASG complex are essentially identical with a few exceptions in the H-site and in the water network at the dimer interface.


Asunto(s)
Cisteína/genética , Diuréticos/metabolismo , Ácido Etacrínico/metabolismo , Gutatión-S-Transferasa pi/química , Gutatión-S-Transferasa pi/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Sustitución de Aminoácidos , Calorimetría , Cristalografía por Rayos X , Activación Enzimática , Glutatión/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Multimerización de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA