Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Proteomics ; 187: 182-199, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30056254

RESUMEN

Fever is a brain-mediated increase in body temperature mainly during inflammatory or infectious challenges. Although there is considerable data regarding the inflammation pathways involved in fever, metabolic alterations necessary to orchestrate the complex inflammatory response are not totally understood. We performed proteomic analysis of rat hypothalamus using label-free LC-MS/MS in a model of fever induced by lipopolysaccharide (LPS) or prostaglandin E2 (PGE2). In total, 7021 proteins were identified. As far as we know, this is the largest rat hypothalamus proteome dataset available to date. Pathway analysis showed proteins from both stimuli associated with inflammatory and metabolic pathways. Concerning metabolic pathways, rats exposed to LPS or PGE2 presented lower relative abundance of proteins involved in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle. Mitochondrial function may also be altered by both stimuli because significant downregulation of several proteins was found, mainly in complexes I and IV. LPS was able to induce downregulation of important proteins in the enzymatic antioxidant system, thereby contributing to oxidative stress. The results offered comprehensive information about fever responses and helped to reveal new insights into proteins potentially involved in inflammatory signaling and metabolic changes in the hypothalamus during systemic LPS and central PGE2 administration. SIGNIFICANCE: The evolutionary persistence of fever, despite the elevated cost for maintenance of this response, suggests that elevation in core temperature may represent an interesting strategy for survival. Fever response is achieved through the integrated behavioral, physiological, immunological and biochemical processes that determine the balance between heat generation and elimination. The development of such complex response arouses interest in studying how the cell metabolism responds or even contributes to promote fever. Our results offered comprehensive information about fever responses, including metabolic and inflammatory pathways, providing new insights into candidate proteins potentially involved in inflammatory signaling and metabolic changes in the hypothalamus during fever induced by systemic LPS and central PGE2 perturbation.


Asunto(s)
Dinoprostona , Fiebre/inducido químicamente , Fiebre/metabolismo , Hipotálamo/metabolismo , Lipopolisacáridos , Proteómica/métodos , Animales , Cromatografía Liquida , Fiebre/patología , Hipotálamo/patología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Masculino , Proteoma/análisis , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Ratas , Ratas Wistar , Coloración y Etiquetado , Espectrometría de Masas en Tándem
2.
New Phytol ; 209(4): 1470-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26467445

RESUMEN

Isoform 3 of sucrose synthase (SUS3) is highly expressed in guard cells; however, the precise function of SUS3 in this cell type remains to be elucidated. Here, we characterized transgenic Nicotiana tabacum plants overexpressing SUS3 under the control of the stomatal-specific KST1 promoter, and investigated the changes in guard cell metabolism during the dark to light transition. Guard cell-specific SUS3 overexpression led to increased SUS activity, stomatal aperture, stomatal conductance, transpiration rate, net photosynthetic rate and growth. Although only minor changes were observed in the metabolite profile in whole leaves, an increased fructose level and decreased organic acid levels and sucrose to fructose ratio were observed in guard cells of transgenic lines. Furthermore, guard cell sucrose content was lower during light-induced stomatal opening. In a complementary approach, we incubated guard cell-enriched epidermal fragments in (13) C-NaHCO3 and followed the redistribution of label during dark to light transitions; this revealed increased labeling in metabolites of, or associated with, the tricarboxylic acid cycle. The results suggest that sucrose breakdown is a mechanism to provide substrate for the provision of organic acids for respiration, and imply that manipulation of guard cell metabolism may represent an effective strategy for plant growth improvement.


Asunto(s)
Glucosiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Estomas de Plantas/citología , Solanum tuberosum/enzimología , Sacarosa/metabolismo , Regulación hacia Arriba , Adaptación Fisiológica , Isótopos de Carbono , Ácidos Carboxílicos/metabolismo , Sequías , Gases/metabolismo , Glucosiltransferasas/genética , Cinética , Luz , Metaboloma , Metabolómica , Especificidad de Órganos , Fenotipo , Desarrollo de la Planta , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Transpiración de Plantas/fisiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Nicotiana/genética
3.
Plant Cell Environ ; 35(4): 747-59, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21999376

RESUMEN

As water availability for agriculture decreases, breeding or engineering of crops with improved water use efficiency (WUE) will be necessary. As stomata are responsible for controlling gas exchange across the plant epidermis, metabolic processes influencing solute accumulation in guard cells are potential targets for engineering. In addition to its role as an osmoticum, sucrose breakdown may be required for synthesis of other osmotica or generation of the ATP needed for solute uptake. Thus, alterations in partitioning of sucrose between storage and breakdown may affect stomatal function. In agreement with this hypothesis, potato (Solanum tuberosum) plants expressing an antisense construct targeted against sucrose synthase 3 (SuSy3) exhibited decreased stomatal conductance, a slight reduction in CO(2) fixation and increased WUE. Conversely, plants with increased guard cell acid invertase activity caused by the introduction of the SUC2 gene from yeast had increased stomatal conductance, increased CO(2) fixation and decreased WUE. (14)CO(2) feeding experiments indicated that these effects cannot be attributed to alterations in photosynthetic capacity, and most likely reflect alterations in stomatal function. These results highlight the important role that sucrose breakdown may play in guard cell function and indicate the feasibility of manipulating plant WUE through engineering of guard cell sucrose metabolism.


Asunto(s)
Glucosiltransferasas/metabolismo , Estomas de Plantas/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Solanum tuberosum/enzimología , Sacarosa/metabolismo , Agua/fisiología , beta-Fructofuranosidasa/genética , Dióxido de Carbono/metabolismo , Glucosiltransferasas/genética , Fotosíntesis/fisiología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transpiración de Plantas/fisiología , Plantas Modificadas Genéticamente , ARN sin Sentido/genética , ARN de Planta/genética , Solanum tuberosum/genética , Solanum tuberosum/fisiología
4.
Plant Cell ; 19(11): 3723-38, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17981998

RESUMEN

In Arabidopsis thaliana, enzymes of glycolysis are present on the surface of mitochondria and free in the cytosol. The functional significance of this dual localization has now been established by demonstrating that the extent of mitochondrial association is dependent on respiration rate in both Arabidopsis cells and potato (Solanum tuberosum) tubers. Thus, inhibition of respiration with KCN led to a proportional decrease in the degree of association, whereas stimulation of respiration by uncoupling, tissue ageing, or overexpression of invertase led to increased mitochondrial association. In all treatments, the total activity of the glycolytic enzymes in the cell was unaltered, indicating that the existing pools of each enzyme repartitioned between the cytosol and the mitochondria. Isotope dilution experiments on isolated mitochondria, using (13)C nuclear magnetic resonance spectroscopy to monitor the impact of unlabeled glycolytic intermediates on the production of downstream intermediates derived from (13)C-labeled precursors, provided direct evidence for the occurrence of variable levels of substrate channeling. Pull-down experiments suggest that interaction with the outer mitochondrial membrane protein, VDAC, anchors glycolytic enzymes to the mitochondrial surface. It appears that glycolytic enzymes associate dynamically with mitochondria to support respiration and that substrate channeling restricts the use of intermediates by competing metabolic pathways.


Asunto(s)
Arabidopsis/metabolismo , Glucólisis , Mitocondrias/enzimología , Solanum tuberosum/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Respiración de la Célula , Fructosa-Bifosfato Aldolasa/aislamiento & purificación , Fructosa-Bifosfato Aldolasa/metabolismo , Espectroscopía de Resonancia Magnética , Peso Molecular , Oxidación-Reducción , Vía de Pentosa Fosfato , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Unión Proteica , Solanum tuberosum/citología , Solanum tuberosum/enzimología , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA