Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JCI Insight ; 3(18)2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30232268

RESUMEN

Cardiac Nav1.5 and Kir2.1-2.3 channels generate Na (INa) and inward rectifier K (IK1) currents, respectively. The functional INa and IK1 interplay is reinforced by the positive and reciprocal modulation between Nav15 and Kir2.1/2.2 channels to strengthen the control of ventricular excitability. Loss-of-function mutations in the SCN5A gene, which encodes Nav1.5 channels, underlie several inherited arrhythmogenic syndromes, including Brugada syndrome (BrS). We investigated whether the presence of BrS-associated mutations alters IK1 density concomitantly with INa density. Results obtained using mouse models of SCN5A haploinsufficiency, and the overexpression of native and mutated Nav1.5 channels in expression systems - rat ventricular cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) - demonstrated that endoplasmic reticulum (ER) trafficking-defective Nav1.5 channels significantly decreased IK1, since they did not positively modulate Kir2.1/2.2 channels. Moreover, Golgi trafficking-defective Nav1.5 mutants produced a dominant negative effect on Kir2.1/2.2 and thus an additional IK1 reduction. Moreover, ER trafficking-defective Nav1.5 channels can be partially rescued by Kir2.1/2.2 channels through an unconventional secretory route that involves Golgi reassembly stacking proteins (GRASPs). Therefore, cardiac excitability would be greatly affected in subjects harboring Nav1.5 mutations with Golgi trafficking defects, since these mutants can concomitantly trap Kir2.1/2.2 channels, thus unexpectedly decreasing IK1 in addition to INa.


Asunto(s)
Síndrome de Brugada/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Arritmias Cardíacas/metabolismo , Células CHO , Cricetulus , Proteínas de la Matriz de Golgi , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canales de Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Ratas , Ratas Sprague-Dawley , Canales de Sodio/metabolismo
2.
Circulation ; 129(14): 1472-82, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24463369

RESUMEN

BACKGROUND: Little is known about the mechanisms underlying the transition from paroxysmal to persistent atrial fibrillation (AF). In an ovine model of long-standing persistent AF we tested the hypothesis that the rate of electric and structural remodeling, assessed by dominant frequency (DF) changes, determines the time at which AF becomes persistent. METHODS AND RESULTS: Self-sustained AF was induced by atrial tachypacing. Seven sheep were euthanized 11.5±2.3 days after the transition to persistent AF and without reversal to sinus rhythm; 7 sheep were euthanized after 341.3±16.7 days of long-standing persistent AF. Seven sham-operated animals were in sinus rhythm for 1 year. DF was monitored continuously in each group. Real-time polymerase chain reaction, Western blotting, patch clamping, and histological analyses were used to determine the changes in functional ion channel expression and structural remodeling. Atrial dilatation, mitral valve regurgitation, myocyte hypertrophy, and atrial fibrosis occurred progressively and became statistically significant after the transition to persistent AF, with no evidence for left ventricular dysfunction. DF increased progressively during the paroxysmal-to-persistent AF transition and stabilized when AF became persistent. Importantly, the rate of DF increase correlated strongly with the time to persistent AF. Significant action potential duration abbreviation, secondary to functional ion channel protein expression changes (CaV1.2, NaV1.5, and KV4.2 decrease; Kir2.3 increase), was already present at the transition and persisted for 1 year of follow up. CONCLUSIONS: In the sheep model of long-standing persistent AF, the rate of DF increase predicts the time at which AF stabilizes and becomes persistent, reflecting changes in action potential duration and densities of sodium, L-type calcium, and inward rectifier currents.


Asunto(s)
Potenciales de Acción/fisiología , Fibrilación Atrial/fisiopatología , Canales de Calcio Tipo L/fisiología , Progresión de la Enfermedad , Frecuencia Cardíaca/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Nodo Sinoatrial/fisiopatología , Canales de Sodio/fisiología , Animales , Estimulación Cardíaca Artificial , Modelos Animales de Enfermedad , Técnicas Electrofisiológicas Cardíacas , Hipertrofia , Miocitos Cardíacos/patología , Técnicas de Placa-Clamp , Ovinos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA