Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Child Neurol ; 35(4): 259-264, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31823681

RESUMEN

BACKGROUND: Pantothenate kinase-associated neurodegeneration is characterized by severe, progressive dystonia. This study aims to describe the reported usage of cannabis products among children with pantothenate kinase-associated neurodegeneration. METHODS: A cross-sectional, 37-item survey was distributed in April 2019 to the families of 44 children who participate in a clinical registry of individuals with pantothenate kinase-associated neurodegeneration. RESULTS: We received 18 responses (40.9% response rate). Children were a mean of 11.0 (SD 4.3) years old. The 15 respondents with dystonia or spasticity were on a median of 2 tone medications (range 0-9). Seven children had ever used cannabis (38.9%). The most common source of information about cannabis was other parents. Children who had ever used cannabis were on more tone medications, were more likely to have used opiates, were less likely to be able to roll, and less likely to sit comfortably, than children who had never used cannabis. Four children reported moderate or significant improvement in dystonia with cannabis. Other areas reported to be moderate or significantly improved were pain (n = 3), sleep (n = 4), anxiety (n = 3), and behavior (n = 2). Adverse effects included sadness (n = 1), agitation/behavior change (n = 1), and tiredness (n = 1). CONCLUSION: Cannabis use was commonly reported among children with pantothenate kinase-associated neurodegeneration whose parents responded to a survey, particularly when many other dystonia treatments had been tried. Physicians should be aware that parents may treat their child with severe, painful dystonia with cannabis. Placebo-controlled studies of products containing cannabidiol and 9-tetrahydrocannabinol are needed for pediatric tone disorders.


Asunto(s)
Marihuana Medicinal/uso terapéutico , Neurodegeneración Asociada a Pantotenato Quinasa/tratamiento farmacológico , Adolescente , Niño , Preescolar , Estudios Transversales , Femenino , Gastrostomía , Humanos , Masculino , Marihuana Medicinal/administración & dosificación , Resultado del Tratamiento
2.
Mol Cell Endocrinol ; 418 Pt 2: 108-19, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26316427

RESUMEN

The incidence of obesity and its related disorders are increasing at a rate of pandemic proportions. Understanding the mechanisms behind the maintenance of energy balance is fundamental in developing treatments for clinical syndromes including obesity and diabetes. A neural network located in the nucleus of the solitary tract-area postrema complex in the hindbrain and the hypothalamus in the forebrain has long been implicated in the control of energy balance. In the hypothalamus this central neuronal network consists of small populations of nuclei with distinct functions such as the arcuate nucleus (ARH), the paraventricular nuclei of the hypothalamus (PVH), the dorsomedial (DMH), the ventromedial (VMH) and the lateral hypothalamus (LH). These hypothalamic areas form interconnected neuronal circuits that respond to fluctuations in energy status by altering the expression of neuropeptides, leading to changes in energy intake and expenditure. Regulation of these hypothalamic nuclei involves the actions of orexigenic peptides (ie ghrelin), which act to stimulate energy intake and decrease energy expenditure, and anorexigenic peptides (ie. leptin and insulin), which act to reduce energy intake and stimulate energy expenditure. Here we review the role of the ARH, DMH and PVH in the control of energy homeostasis and how recent advances in research technologies (Cre-loxP technology, optogenetics and pharmacogenetics) have shed light on the role of these hypothalamic nuclei in the control of energy balance. Such novel findings include the implication of ARH POMC and AgRP neurons in the browning of white adipose tissue to regulate energy expenditure as well as the likely existence of divergent hypothalamic pathways in the DMH and PVH in the control of food intake and energy expenditure.


Asunto(s)
Tejido Adiposo/metabolismo , Peso Corporal/fisiología , Encéfalo/metabolismo , Hipotálamo/metabolismo , Páncreas/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Hipotalámico Dorsomedial/metabolismo , Ingestión de Energía , Metabolismo Energético , Humanos , Leptina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA