Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Inherit Metab Dis ; 43(6): 1232-1242, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33448436

RESUMEN

Anaplerotic odd-chain fatty acid supplementation has been suggested as an approach to replenish citric acid cycle intermediate (CACi) pools and facilitate adenosine triphosphate (ATP) production in subjects with long-chain fatty acid oxidation disorders, but the evidence that cellular CACi depletion exists and that repletion occurs following anaplerotic substrate supplementation is limited. We exercised very long-chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) and wild-type (WT) mice to exhaustion and collected cardiac tissue for measurement of CACi by targeted metabolomics. In a second experimental group, VLCAD-/- and WT mice that had been fed chow prepared with either medium-chain triglyceride (MCT) oil or triheptanoin for 4 weeks were exercised for 60 minutes. VLCAD-/- mice exhibited lower succinate in cardiac muscle at exhaustion than WT mice suggesting lower CACi in VLCAD-/- with prolonged exercise. In mice fed either MCT or triheptanoin, succinate and malate were greater in VLCAD-/- mice fed triheptanoin compared to VLCAD-/- animals fed MCT but lower than WT mice fed triheptanoin. Long-chain odd acylcarnitines such as C19 were elevated in VLCAD-/- and WT mice fed triheptanoin suggesting some elongation of the heptanoate, but it is unknown what proportion of heptanoate was oxidized vs elongated. Prolonged exercise was associated with decreased cardiac muscle succinate in VLCAD-/- mice in comparison to WT mice. VLCAD-/- fed triheptanoin had increased succinate compared to VLCAD-/- mice fed MCT but lower than WT mice fed triheptanoin. Cardiac CACi were higher following dietary ingestion of an anaplerotic substrate, triheptanoin, in comparison to MCT.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga/deficiencia , Síndromes Congénitos de Insuficiencia de la Médula Ósea/dietoterapia , Síndromes Congénitos de Insuficiencia de la Médula Ósea/metabolismo , Errores Innatos del Metabolismo Lipídico/dietoterapia , Errores Innatos del Metabolismo Lipídico/metabolismo , Enfermedades Mitocondriales/dietoterapia , Enfermedades Mitocondriales/metabolismo , Enfermedades Musculares/dietoterapia , Enfermedades Musculares/metabolismo , Triglicéridos/administración & dosificación , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Animales , Ciclo del Ácido Cítrico , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Grasas de la Dieta/administración & dosificación , Ácidos Grasos/metabolismo , Femenino , Errores Innatos del Metabolismo Lipídico/genética , Hígado/metabolismo , Masculino , Ratones , Enfermedades Mitocondriales/genética , Enfermedades Musculares/genética , Miocardio/metabolismo , Oxidación-Reducción , Triglicéridos/química
2.
J Inherit Metab Dis ; 41(4): 709-718, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29520738

RESUMEN

Hyperphenylalaninemia (HPA) caused by hepatic phenylalanine hydroxylase (PAH) deficiency has severe consequences on brain monoamine neurotransmitter metabolism. We have studied monoamine neurotransmitter status and the effect of tetrahydrobiopterin (BH4) treatment in Pahenu1/enu2 (ENU1/2) mice, a model of partial PAH deficiency. These mice exhibit elevated blood L-phenylalanine (L-Phe) concentrations similar to that of mild hyperphenylalaninemia (HPA), but brain levels of L-Phe are still ~5-fold elevated compared to wild-type. We found that brain L-tyrosine, L-tryptophan, BH4 cofactor and catecholamine concentrations, and brain tyrosine hydroxylase (TH) activity were normal in these mice but that brain serotonin, 5-hydroxyindolacetic acid (5HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) content, and brain TH protein, as well as tryptophan hydroxylase type 2 (TPH2) protein levels and activity were reduced in comparison to wild-type mice. Parenteral L-Phe loading conditions did not lead to significant changes in brain neurometabolite concentrations. Remarkably, enteral BH4 treatment, which normalized brain L-Phe levels in ENU1/2 mice, lead to only partial recovery of brain serotonin and 5HIAA concentrations. Furthermore, indirect evidence indicated that the GTP cyclohydrolase I (GTPCH) feedback regulatory protein (GFRP) complex may be a sensor for brain L-Phe elevation to ameliorate the toxic effects of HPA. We conclude that BH4 treatment of HPA toward systemic L-Phe lowering reverses elevated brain L-Phe content but the recovery of TPH2 protein and activity as well as serotonin levels is suboptimal, indicating that patients with mild HPA and mood problems (depression or anxiety) treated with the current diet may benefit from supplementation with BH4 and 5-OH-tryptophan.


Asunto(s)
Biopterinas/análogos & derivados , Encéfalo/metabolismo , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/metabolismo , Serotonina/metabolismo , Animales , Biopterinas/farmacología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Humanos , Ratones , Ratones Mutantes , Neurotransmisores/metabolismo , Fenilalanina/sangre , Fenilalanina/metabolismo , Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/genética , Triptófano Hidroxilasa/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
3.
Mol Genet Metab ; 117(1): 5-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26653793

RESUMEN

Central nervous system (CNS) deficiencies of the monoamine neurotransmitters, dopamine and serotonin, have been implicated in the pathophysiology of neuropsychiatric dysfunction in phenylketonuria (PKU). Increased brain phenylalanine concentration likely competitively inhibits the activities of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), the rate limiting steps in dopamine and serotonin synthesis respectively. Tetrahydrobiopterin (BH4) is a required cofactor for TH and TPH activity. Our hypothesis was that treatment of hyperphenylalaninemic Pah(enu2/enu2) mice, a model of human PKU, with sapropterin dihydrochloride, a synthetic form of BH4, would stimulate TH and TPH activities leading to improved dopamine and serotonin synthesis despite persistently elevated brain phenylalanine. Sapropterin (20, 40, or 100mg/kg body weight in 1% ascorbic acid) was administered daily for 4 days by oral gavage to Pah(enu2/enu2) mice followed by measurement of brain biopterin, phenylalanine, tyrosine, tryptophan and monoamine neurotransmitter content. A significant increase in brain biopterin content was detected only in mice that had received the highest sapropterin dose, 100mg/kg. Blood and brain phenylalanine concentrations were unchanged by sapropterin therapy. Sapropterin therapy also did not alter the absolute amounts of dopamine and serotonin in brain but was associated with increased homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), dopamine and serotonin metabolites respectively, in both wild type and Pah(enu2/enu2) mice. Oral sapropterin therapy likely does not directly affect central nervous system monoamine synthesis in either wild type or hyperphenylalaninemic mice but may stimulate synaptic neurotransmitter release and subsequent metabolism.


Asunto(s)
Biopterinas/análogos & derivados , Encéfalo/metabolismo , Neurotransmisores/metabolismo , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/metabolismo , Administración Oral , Animales , Biopterinas/administración & dosificación , Biopterinas/química , Biopterinas/uso terapéutico , Modelos Animales de Enfermedad , Dopamina/metabolismo , Genotipo , Ácido Homovanílico/metabolismo , Humanos , Indoles/metabolismo , Ratones , Fenilalanina/sangre , Serotonina/metabolismo , Triptófano Hidroxilasa/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
4.
J Inherit Metab Dis ; 37(5): 735-43, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24487571

RESUMEN

Monoamine neurotransmitter deficiency has been implicated in the etiology of neuropsychiatric symptoms associated with chronic hyperphenylalaninemia in phenylketonuria (PKU). Two proposed explanations for neurotransmitter deficiency in PKU include first, that chronically elevated blood L-phenylalanine (Phe) inhibits the transport of L-tyrosine (Tyr) and L-tryptophan (Trp), the substrates for dopamine and serotonin synthesis respectively, into brain. In the second hypothesis, elevated Phe competitively inhibits brain tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activities, the rate limiting steps in dopamine and serotonin synthesis. Dietary supplementation with large neutral amino acids (LNAA) including Tyr and Trp has been recommended for individuals with chronically elevated blood Phe in an attempt to restore amino acid and monoamine homeostasis in brain. As a potential alternative treatment approach, we demonstrate that pharmacologic inhibition of Tyr degradation through oral administration of nitisinone (NTBC) yielded sustained increases in blood and brain Tyr, decreased blood and brain Phe, and consequently increased dopamine synthesis in a murine model of PKU. Our results suggest that Phe-mediated inhibition of TH activity is the likely mechanism of impaired dopamine synthesis in PKU. Pharmacologic inhibition of Tyr degradation may be a promising adjunct therapy for CNS monoamine neurotransmitter deficiency in hyperphenylalaninemic individuals with PKU.


Asunto(s)
Química Encefálica/efectos de los fármacos , Ciclohexanonas/uso terapéutico , Dopamina/deficiencia , Inhibidores Enzimáticos/uso terapéutico , Nitrobenzoatos/uso terapéutico , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/metabolismo , Tirosina/metabolismo , Aminoácidos/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurotransmisores/deficiencia , Fenilcetonurias/genética
5.
J Biomed Mater Res A ; 64(3): 583-90, 2003 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-12579573

RESUMEN

This study was designed to determine if the surface modification of porous poly(lactic acid) (PLA) scaffolds would enhance osteogenic precursor cell (OPC) attachment, growth, and differentiation. A covalently grafted amino group (-NH(2)), poly(L-lysine) (PLL), and the peptide arginine-glycine-aspartic acid (RGD) were selected for the evaluation. The hypothesis was that surface modification would have a positive impact on cell-substratum interactions. The experiment was performed by OPC cells being placed on PLA films and scaffolds modified with NH(2), PLL, or RGD in tissue culture media. OPC attachment to PLA films was assessed after 24 h of incubation. The growth and differentiation of the adherent OPCs on porous PLA scaffolds were assessed after 14 and 28 days for alkaline phosphatase (APase) activity and calcium levels, both of which increase as OPCs differentiate into mature bone cells. All assays were accomplished in triplicate, and data were tested with post hoc orthogonal contrasts (i.e., Fisher's least significant difference) at p < or = 0.05. The PLA film surface-modified with RGD showed better OPC cell attachment than the other films. The cells on the PLA scaffolds surface-modified with RGD also exhibited an increase in APase activity and calcium levels in comparison with those on other scaffolds. This difference was apparent at both time intervals and was especially evident in the tissue culture media containing an osteogenic supplement. The results of this study indicate that modifying the surface of PLA polymer scaffolds with RGD enhances bone cell attachment and differentiation and may improve their ability to regenerate bone tissue more efficiently in wound models.


Asunto(s)
Adhesión Celular/fisiología , Diferenciación Celular/fisiología , Oligopéptidos/química , Osteoblastos/fisiología , Polímeros/química , Células Madre/fisiología , Implantes Absorbibles , Fosfatasa Alcalina/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Calcio/metabolismo , Técnicas de Cultivo de Célula/métodos , División Celular/fisiología , Células Cultivadas , Humanos , Ácido Láctico/química , Lisina/química , Ensayo de Materiales , Osteoblastos/citología , Poliésteres , Porosidad , Células Madre/citología , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA