Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-29104176

RESUMEN

Two major oil crises in United States history, the 1989 Exxon-Valdez oil spill in Alaska and the 2010 Deepwater Horizon Oil Rig explosion in the Gulf of Mexico, drew attention to the need for toxicological experiments on oil and chemically dispersed oil. We are still learning the effects these spills had on wildlife. However, little data is known about the toxicity of these substances in marine mammals. The objective of this study is to determine the toxicity of Alaskan oil, as well as chemically dispersed oil. Oil experiments were performed using the water accommodated fraction of Alaskan oil (WAF) and the chemically enhanced water accommodated fraction of Alaskan oil (CEWAF). The Alaskan WAF is not cytotoxic to sperm whale skin cells though it did induce chromosome damage; S9-mediated metabolism did not affect the cytotoxicity of WAF but did increase the levels of chromosome damage. Alaskan CEWAF is more cytotoxic and genotoxic than the WAF; S9 mediated metabolism increased both cytotoxicity and genotoxicity of CEWAF. Analysis of the PAH content of Alaskan WAF and CEWAF revealed a forty-fold increase in the total levels of PAHs in CEWAF compared to WAF. These findings show that chemically dispersed oil leads to higher levels of PAH exposure which are more toxic and likely to lead to longer and more persistent health effects.


Asunto(s)
Lípidos/toxicidad , Contaminación por Petróleo/efectos adversos , Petróleo/toxicidad , Piel/efectos de los fármacos , Cachalote , Tensoactivos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Aberraciones Cromosómicas/inducido químicamente , Relación Dosis-Respuesta a Droga , Pruebas de Mutagenicidad , Medición de Riesgo , Piel/metabolismo , Piel/patología
2.
Environ Sci Technol ; 48(5): 2997-3006, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24552566

RESUMEN

Concern regarding the Deepwater Horizon oil crisis has largely focused on oil and dispersants while the threat of genotoxic metals in the oil has gone largely overlooked. Genotoxic metals, such as chromium and nickel, damage DNA and bioaccumulate in organisms, resulting in persistent exposures. We found chromium and nickel concentrations ranged from 0.24 to 8.46 ppm in crude oil from the riser, oil from slicks on surface waters and tar balls from Gulf of Mexico beaches. We found nickel concentrations ranged from 1.7 to 94.6 ppm wet weight with a mean of 15.9 ± 3.5 ppm and chromium concentrations ranged from 2.0 to 73.6 ppm wet weight with a mean of 12.8 ± 2.6 ppm in tissue collected from Gulf of Mexico whales in the wake of the crisis. Mean tissue concentrations were significantly higher than those found in whales collected around the world prior to the spill. Given the capacity of these metals to damage DNA, their presence in the oil, and their elevated concentrations in whales, we suggest that metal exposure is an important understudied concern for the Deepwater Horizon oil disaster.


Asunto(s)
Cromo/análisis , Mutágenos/análisis , Níquel/análisis , Contaminación por Petróleo , Contaminantes Químicos del Agua/análisis , Ballenas , Animales , Desastres , Monitoreo del Ambiente , Golfo de México , Petróleo/análisis , Contaminación por Petróleo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA