Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Vector Ecol ; 38(2): 229-36, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24581350

RESUMEN

Nearly 30% of emerging infectious disease events are caused by vector-borne pathogens with wildlife origins. Their transmission involves a complex interplay among pathogens, arthropod vectors, the environment and host species, and they pose a risk for public health, livestock and wildlife species. Examining habitat associations of vector species known to transmit infectious diseases, and quantifying spatio-temporal dynamics of mosquito vector communities is one aspect of the holistic One Health approach that is necessary to develop effective control measures. A survey was conducted from May to August, 2010 of the abundance and diversity of mosquito species occurring in the mixed-grass prairie habitat of the Smoky Hills of Kansas. This region is an important breeding ground for North America's grassland nesting birds and, as such, it could represent an important habitat for the enzootic amplification cycle of avian malaria and infectious encephalitides, as well as spill-over events to humans and livestock. A total of 11 species, belonging to the three genera Aedes, Anopheles, and Culex, was collected during this study. Aedes nigromaculis, Ae. sollicitans, Ae. taeniorhynchus, Culex salinarius, and Cx. tarsalis accounted for 98% of the collected species. Multiple linear regression models suggested that mosquito abundances in the grasslands of the central Great Plains were explained by meteorological and environmental variables. Temporal dynamics in mosquito abundances were well supported by models that included maximum and minimum temperature indices (adjusted R(2) = 0.73). Spatial dynamics of mosquito abundances were best explained by a model containing the following environmental variables (adjusted R(2) =0.37): ground curvature, topographic wetness index, distance to woodland, and distance to road. The mosquito species we detected are known vectors for infectious encephalitides, including West Nile virus. Understanding the microhabitat characteristics of these mosquito species in a grassland ecosystem will aid in the control and management of these disease vectors.


Asunto(s)
Culicidae/fisiología , Análisis Espacio-Temporal , Animales , Kansas
2.
Mol Ecol ; 19(13): 2725-38, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20546130

RESUMEN

Viral strain evolution and disease emergence are influenced by anthropogenic change to the environment. We investigated viral characteristics, host ecology, and landscape features in the rabies-striped skunk disease system of the central Great Plains to determine how these factors interact to influence disease emergence. We amplified portions of the N and G genes of rabies viral RNA from 269 samples extracted from striped skunk brains throughout the distribution of two different rabies strains for which striped skunks were the reservoir. Because the distribution of these two strains overlapped on the landscape and were present in the same host population, we could evaluate how viral properties influenced epidemiological patterns in the area of sympatry. We found that South Central Skunk rabies (SCSK) exhibited intense purifying selection and high infectivity, which are both characteristics of an epizootic virus. Conversely, North Central Skunk rabies (NCSK) exhibited relaxed purifying selection and comparatively lower infectivity, suggesting the presence of an enzootic virus. The host population in the area of sympatry was highly admixed, and skunks among allopatric and sympatric areas had similar effective population sizes. Spatial analysis indicated that landscape features had minimal influence on NCSK movement across the landscape, but those same features were partial barriers to the spread of SCSK. We conclude that NCSK and SCSK have different epidemiological properties that interact differently with both host and landscape features to influence rabies spread in the central Great Plains. We suggest a holistic approach for future studies of emerging infectious diseases that includes studies of viral properties, host characteristics, and spatial features.


Asunto(s)
Mephitidae/virología , Virus de la Rabia/genética , Rabia/epidemiología , Rabia/virología , Animales , Ecosistema , Genes Virales , Geografía , Interacciones Huésped-Patógeno , Repeticiones de Microsatélite , Modelos Biológicos , Epidemiología Molecular , ARN Viral/genética , Virus de la Rabia/patogenicidad , Selección Genética , Análisis de Secuencia de ARN , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA