Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Bone Res ; 9(1): 39, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465741

RESUMEN

Back pain is a common condition with a high social impact and represents a global health burden. Intervertebral disc disease (IVDD) is one of the major causes of back pain; no therapeutics are currently available to reverse this disease. The impact of bone mineral density (BMD) on IVDD has been controversial, with some studies suggesting osteoporosis as causative for IVDD and others suggesting it as protective for IVDD. Functional studies to evaluate the influence of genetic components of BMD in IVDD could highlight opportunities for drug development and repurposing. By taking a holistic 3D approach, we established an aging zebrafish model for spontaneous IVDD. Increased BMD in aging, detected by automated computational analysis, is caused by bone deformities at the endplates. However, aged zebrafish spines showed changes in bone morphology, microstructure, mineral heterogeneity, and increased fragility that resembled osteoporosis. Elements of the discs recapitulated IVDD symptoms found in humans: the intervertebral ligament (equivalent to the annulus fibrosus) showed disorganized collagen fibers and herniation, while the disc center (nucleus pulposus equivalent) showed dehydration and cellular abnormalities. We manipulated BMD in young zebrafish by mutating sp7 and cathepsin K, leading to low and high BMD, respectively. Remarkably, we detected IVDD in both groups, demonstrating that low BMD does not protect against IVDD, and we found a strong correlation between high BMD and IVDD. Deep learning was applied to high-resolution synchrotron µCT image data to analyze osteocyte 3D lacunar distribution and morphology, revealing a role of sp7 in controlling the osteocyte lacunar 3D profile. Our findings suggest potential avenues through which bone quality can be targeted to identify beneficial therapeutics for IVDD.

2.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751494

RESUMEN

Dietary phosphorus (P) is essential for bone mineralisation in vertebrates. P deficiency can cause growth retardation, osteomalacia and bone deformities, both in teleosts and in mammals. Conversely, excess P supply can trigger soft tissue calcification and bone hypermineralisation. This study uses a wide range of complementary techniques (X-rays, histology, TEM, synchrotron X-ray tomographic microscopy, nanoindentation) to describe in detail the effects of dietary P on the zebrafish skeleton, after two months of administering three different diets: 0.5% (low P, LP), 1.0% (regular P, RP), and 1.5% (high P, HP) total P content. LP zebrafish display growth retardation and hypomineralised bones, albeit without deformities. LP zebrafish increase production of non-mineralised bone matrix, and osteoblasts have enlarged endoplasmic reticulum cisternae, indicative for increased collagen synthesis. The HP diet promotes growth, high mineralisation, and stiffness but causes vertebral centra fusions. Structure and arrangement of bone matrix collagen fibres are not influenced by dietary P in all three groups. In conclusion, low dietary P content stimulates the formation of non-mineralised bone without inducing malformations. This indicates that bone formation and mineralisation are uncoupled. In contrast, high dietary P content promotes mineralisation and vertebral body fusions. This new zebrafish model is a useful tool to understand the mechanisms underlying osteomalacia and abnormal mineralisation, due to underlying variations in dietary P levels.


Asunto(s)
Huesos/química , Calcificación Fisiológica/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Fósforo Dietético , Animales , Fósforo Dietético/análisis , Fósforo Dietético/farmacología , Pez Cebra
3.
J Exp Biol ; 222(Pt 3)2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30573664

RESUMEN

Calcium and phosphorus (P) are the main bone minerals, and P deficiency can cause hypomineralized bones (osteomalacia) and malformations. This study used a P-deficient salmon model to falsify three hypotheses. First, an extended period of dietary P deficiency does not cause pathologies other than osteomalacia. Second, secondary mineralization of non-mineralized bone is possible. Third, secondary mineralization can restore the bones' mineral composition and mechanical properties. For 7 weeks, post-smolt Atlantic salmon (Salmo salar) received diets with regular P content (RP) or with a 50% lowered P content (LP). For additional 9 weeks, RP animals continued on the regular diet (RP-RP). LP animals continued on the LP diet (LP-LP), on a regular P diet (LP-RP) or on a high P diet (LP-HP). After 16 weeks, animals in all groups maintained a non-deformed vertebral column. LP-LP animals continued bone formation albeit without mineralization. Nine weeks of RP diet largely restored the mineral content and mechanical properties of vertebral bodies. Mineralization resumed deep inside the bone and away from osteoblasts. The history of P deficiency was traceable in LP-RP and LP-HP animals as a ring of low-mineralized bone in the vertebral body endplates, but no tissue alterations occurred that foreshadow vertebral body compression or fusion. Large quantities of non-mineralized salmon bone have the capacity to re-mineralize. If 16 weeks of P deficiency as a single factor is not causal for typical vertebral body malformations, other factors remain to be identified. This example of functional bone without minerals may explain why some teleost species can afford to have an extremely low mineralized skeleton.


Asunto(s)
Huesos/fisiología , Calcificación Fisiológica/efectos de los fármacos , Fósforo/deficiencia , Salmo salar/fisiología , Alimentación Animal/análisis , Animales , Dieta/veterinaria
4.
Biochim Biophys Acta ; 1801(2): 127-37, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19833228

RESUMEN

The formation and mineralisation of bone are two critical processes in fast-growing Atlantic salmon (Salmo salar). The mechanisms of these processes, however, have not been described in detail. Thus, in vitro systems that allow the study of factors that influence bone formation in farmed Atlantic salmon are highly warranted. We describe here a method by which unspecialized primary cells from salmon white muscle can differentiate to osteoblasts in vitro. We have subsequently used the differentiated cells as a model system to study the effects of two factors that influence bone formation in Atlantic salmon under commercial farming conditions, namely polyunsaturated fatty acids, PUFAs, and temperature. Muscle precursor cells changed their morphology from triangular or spindle-shaped cells to polygonal or cubical cells after 3 weeks in osteogenic medium. In addition, gene expression studies showed that marker genes for osteoblastogenesis; alp, col1a1, osteocalcin, bmp2 and bmp4 increased after 3 weeks of incubation in osteogenic media showing that these cells have differentiated to osteoblasts at this stage. Adding CLA or DHA to the osteoblast media resulted in a reduced PGE(2) production and increased expression of osteocalcin. Further, temperature studies showed that differentiating osteoblasts are highly sensitive to increased incubation temperature at early stages of differentiation. Our studies show that unspecialized precursor cells isolated from salmon muscle tissue can be caused to differentiate to osteoblasts in vitro. Furthermore, this model system appears to be suitable for the study of osteoblast biology in vitro.


Asunto(s)
Diferenciación Celular , Ácidos Grasos Insaturados/farmacología , Expresión Génica/fisiología , Hipertermia Inducida , Mioblastos/citología , Osteoblastos/citología , Animales , Dinoprostona/metabolismo , Técnicas In Vitro , Mioblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Salmo salar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA