Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Microbiol ; 117(4): 1079-94, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24995828

RESUMEN

AIMS: To describe microbial diversity, biofilm composition and biogeochemical potential within biofilms in the water overlying uranium tailings characterized by high pH, high metal concentration and low permeability. METHODS AND RESULTS: To estimate microbial diversity in biofilms formed in water columns overlying uranium mine tailings, culture-dependent and culture-independent methods were employed. High-throughput sequencing revealed the presence of 11 phyla; however, the majority of the sequences were affiliated with four major lineages (Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes) as confirmed by culture-based methods. Dominant phylotypes were closely related to methylotrophs (Methylobacterium) and bacterial groups able to utilize complex hydrocarbons (Aquabacterium and Dechloromonas). Microbial diversity in biofilms from the 13 m depth was significantly different that in biofilms from 1 to 41 m (P < 0·05). Phylotypes closely related to iron-reducing bacteria were identified at each depth; whereas sulphate-, thio-sulphate-, sulphite- and sulphur-reducing bacteria, at low abundance, were only detected at lower depths. Confocal scanning laser microscopy (CSLM) was used to investigate polymer quantity and composition of the biofilm components, and principal component analysis of the CLSM data revealed that the relative abundance of α-L-fucose and N-acetyl-glucosamine/lipopolysaccharide residues separated tailings-water interface biofilms from those from other depths. Reduced (ferrous) iron was detected within all the biofilm samples examined by scanning X-ray transmission microscopy. CONCLUSIONS: Microbial communities within the water column covering a highly alkaline uranium tailings body form biofilms with microenvironments where iron reduction takes place. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the biogeochemical potential of microbial biofilm communities in the water column covering an alkaline uranium tailings body; specifically, the nature of the bacterial groups detected (Aquabacterium, Dechloromonas) and the presence of reduced iron suggest that complex hydrocarbons are available for bacterial growth and geochemical change, such as iron reduction, can occur even though the system bulk phase is predominantly oxic.


Asunto(s)
Bacterias/clasificación , Biopelículas/crecimiento & desarrollo , Minería , Contaminantes Radiactivos del Suelo/metabolismo , Uranio/metabolismo , Microbiología del Agua , Bacterias/genética , Bacterias/aislamiento & purificación , Filogenia
2.
J Appl Microbiol ; 114(6): 1671-86, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23448257

RESUMEN

AIMS: To describe the diversity and metabolic potential of microbial communities in uranium mine tailings characterized by high pH, high metal concentration and low permeability. METHODS AND RESULTS: To assess microbial diversity and their potential to influence the geochemistry of uranium mine tailings using aerobic and anaerobic culture-based methods, in conjunction with next generation sequencing and clone library sequencing targeting two universal bacterial markers (the 16S rRNA and cpn60 genes). Growth assays revealed that 69% of the 59 distinct culturable isolates evaluated were multiple-metal resistant, with 15% exhibiting dual-metal hypertolerance. There was a moderately positive correlation coefficient (R = 0·43, P < 0·05) between multiple-metal resistance of the isolates and their enzyme expression profile. Of the isolates tested, 17 reduced amorphous iron, 22 reduced molybdate and seven oxidized arsenite. Based on next generation sequencing, tailings depth was shown to influence bacterial community composition, with the difference in the microbial diversity of the upper (0-20 m) and middle (20-40 m) tailings zones being highly significant (P < 0·01) from the lower zone (40-60 m) and the difference in diversity of the upper and middle tailings zone being significant (P < 0·05). Phylotypes closely related to well-known sulfate-reducing and iron-reducing bacteria were identified with low abundance, yet relatively high diversity. CONCLUSIONS: The presence of a population of metabolically-diverse, metal-resistant micro-organisms within the tailings environment, along with their demonstrated capacity for transforming metal elements, suggests that these organisms have the potential to influence the long-term geochemistry of the tailings. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first investigation of the diversity and functional potential of micro-organisms present in low permeability, high pH uranium mine tailings.


Asunto(s)
Bacterias/clasificación , Minería , Uranio , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodiversidad , Biotransformación , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Metales/toxicidad , Datos de Secuencia Molecular , Permeabilidad , Filogenia , ARN Ribosómico 16S/genética , Cloruro de Sodio/toxicidad
3.
Can J Microbiol ; 54(11): 932-40, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18997849

RESUMEN

Microbiological analyses were conducted on core samples collected along a vertical profile (0-66 m below surface) from the tailings management facility (TMF) at the Rabbit Lake uranium mine in northern Saskatchewan, Canada. Bacterial numbers in the core materials were similar to surrounding soils and surface waters, regardless of the seemingly unfavorable pH (mean=9.9) and temperature (approximately 0 degrees C) in the TMF. The greatest number of viable cells (105 CFU/g) was detected at the interface between the tailings and overlying standing water, below which cell counts decreased rapidly with depth. Whole-community metabolic profiles for samples from the different depths grouped into 3 clusters; however, these groups could not be positively correlated with sampling depth, temperature, redox potential, pH, or ore-mill feed. Flow-cell studies demonstrated microbial communities in the tailings surface water could develop biofilms and maintain cell activity at both pH 10 and 7, and altering the pH between these 2 values had little effect on biofilm viability. These results demonstrate the resilience and adaptive nature of naturally occurring microbial communities and signify a potential role of microbial activity in the long-term geochemical evolution of the TMF.


Asunto(s)
Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Minería , Uranio , Microbiología del Agua , Bacterias/clasificación , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Biopelículas , Concentración de Iones de Hidrógeno , Filogenia , Saskatchewan , Uranio/metabolismo
4.
Can J Microbiol ; 49(7): 425-32, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-14569283

RESUMEN

Soil dilution plates were prepared from different soil samples using a solid synthetic selective medium containing (i). glucose as carbon source, (ii). thymine as nitrogen source, (iii). vitamins, (iv). minerals, and (v). chloramphenicol as antibacterial agent. Using the Diazonium Blue B colour reaction, it was found that both ascomycetous and basidiomycetous yeasts were able to grow on this medium. Subsequently, the medium was used to enumerate yeasts in soil microcosms prepared from four different soil samples, which were experimentally treated with the fungicide copper oxychloride, resulting in copper (Cu) concentrations of up to 1000 ppm. The selective medium supplemented with 32 ppm of Cu was used to enumerate Cu-resistant yeasts in the microcosms. The results showed that the addition of Cu at concentrations >or=approximately 1000 ppm did not have a significant effect on total number of yeasts in the soil. Furthermore, it was found that Cu-resistant yeasts were present in all the soil samples, regardless of the amount of Cu that the soil was challenged with. At the end of the incubation period, yeasts in the microcosms with zero and approximately 1000 ppm of additional Cu were enumerated, isolated, and identified with sequence analyses of the D1/D2 600-650 bp region of the large subunit of ribosomal DNA. Hymenomycetous species dominated in the control soil, while higher numbers of the urediniomycetous species were found in the soil that received Cu. These observations suggest that urediniomycetous yeasts may play an important role in re-establishing overall microbial activity in soils, following perturbations, such as the addition of Cu-based fungicides.


Asunto(s)
Cobre/farmacología , Ecosistema , Microbiología del Suelo , Levaduras/clasificación , Levaduras/crecimiento & desarrollo , Medios de Cultivo , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA