Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 13(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38592867

RESUMEN

In light of expected climate change, it is important to seek nature-based solutions that can contribute to the protection of our planet as well as to help overcome the emerging adverse changes. In an agricultural context, increasing plant resistance to abiotic stress seems to be crucial. Therefore, the scope of the presented research was focused on the application of botanical extracts that exerted positive effects on model plants growing under controlled laboratory conditions, as well as plants subjected to sorbitol-induced osmotic stress. Foliar spraying increased the length and fresh mass of the shoots (e.g., extracts from Taraxacum officinale, Trifolium pratense, and Pisum sativum) and the roots (e.g., Solidago gigantea, Hypericum perforatum, and Pisum sativum) of cabbage seedlings grown under stressful conditions, as well as their content of photosynthetic pigments (Pisum sativum, Lens culinaris, and Hypericum perforatum) along with total phenolic compounds (Hypericum perforatum, Taraxacum officinale, and Urtica dioica). The antioxidant activity of the shoots measured with the use of DDPH (Pisum sativum, Taraxacum officinale, Urtica dioica, and Hypericum perforatum), ABTS (Trifolium pratense, Symphytum officinale, Valeriana officinalis, Pisum sativum, and Lens culinaris), and FRAP (Symphytum officinale, Valeriana officinalis, Urtica dioica, Hypericum perforatum, and Taraxacum officinale) assays was also enhanced in plants exposed to osmotic stress. Based on these findings, the most promising formulation based on Symphytum officinale was selected and subjected to transcriptomic analysis. The modification of the expression of the following genes was noted: Bol029651 (glutathione S-transferase), Bol027348 (chlorophyll A-B binding protein), Bol015841 (S-adenosylmethionine-dependent methyltransferases), Bol009860 (chlorophyll A-B binding protein), Bol022819 (GDSL lipase/esterase), Bol036512 (heat shock protein 70 family), Bol005916 (DnaJ Chaperone), Bol028754 (pre-mRNA splicing Prp18-interacting factor), Bol009568 (heat shock protein Hsp90 family), Bol039362 (gibberellin regulated protein), Bol007693 (B-box-type zinc finger), Bol034610 (RmlC-like cupin domain superfamily), Bol019811 (myb_SHAQKYF: myb-like DNA-binding domain, SHAQKYF class), Bol028965 (DA1-like Protein). Gene Ontology functional analysis indicated that the application of the extract led to a decrease in the expression of many genes related to the response to stress and photosynthetic systems, which may confirm a reduction in the level of oxidative stress in plants treated with biostimulants. The conducted studies showed that the use of innovative plant-based products exerted positive effects on crops and can be used to supplement current cultivation practices.

2.
Molecules ; 27(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35566181

RESUMEN

The aim of this study was to analyze the microbiome of carrot (Daucus carota subsp. sativus) subjected to minimal pre-treatment (rinsing in organic acid solution) and packaging in a high-oxygen modified atmosphere, and then stored for 17 days under refrigeration conditions (4 °C). The highest levels of bacteria in the carrot microbiome were characterized, at almost 78%, by bacteria belonging to the Enterobacteriaceae and Pseudomonadaceae families. Rinsing in a solution of ascorbic and citric acids resulted in the improvement of microbiological quality in the first day of storage. However, the use of a high-oxygen modified atmosphere extended the shelf life of the minimally processed product. Compared to carrots stored in air, those stored in high oxygen concentration were characterized by a greater ratio of bacteria belonging to the Serratia and Enterobacter genera, and a lower ratio belonging to the Pseudomonas and Pantoea genera. Moreover, the ß-biodiversity analysis confirmed that the oxygen concentration was the main factor influencing the differentiation of the metabiomes of the stored carrots. The bacterial strains isolated from carrots identified by molecular methods were mostly pathogenic or potentially pathogenic microorganisms. Neither the minimal pre-treatment nor packaging in high-oxygen atmosphere was able to eliminate the threat of pathogenic bacteria emerging in the product.


Asunto(s)
Daucus carota , Microbiota , Atmósfera , Bacterias/genética , Dióxido de Carbono/análisis , Recuento de Colonia Microbiana , Microbiología de Alimentos , Embalaje de Alimentos/métodos , Conservación de Alimentos/métodos , Humanos , Oxígeno/análisis
3.
Sci Rep ; 12(1): 5487, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361821

RESUMEN

Given the increasing consumer demand for raw, nonprocessed, safe, and long shelf-life fish and seafood products, research concerning the application of natural antimicrobials as alternatives to preservatives is of great interest. The aim of the following paper was to evaluate the effect of essential oils (EOs) from black pepper (BPEO) and tarragon (TEO), and their bioactive compounds: limonene (LIM), ß-caryophyllene (CAR), methyl eugenol (ME), and ß-phellandrene (PHE) on the lipolytic activity and type II secretion system (T2SS) of Pseudomonas psychrophila KM02 (KM02) fish isolates grown in vitro and in fish model conditions. Spectrophotometric analysis with the p-NPP reagent showed inhibition of lipolysis from 11 to 46%. These results were confirmed by RT-qPCR, as the expression levels of lipA, lipB, and genes encoding T2SS were also considerably decreased. The supplementation of marinade with BPEO and TEO contributed to KM02 growth inhibition during vacuum packaging of salmon fillets relative to control samples. Whole-genome sequencing (WGS) provided insight into the spoilage potential of KM02, proving its importance as a spoilage microorganism whose metabolic activity should be inhibited to maintain the quality and safety of fresh fish in the food market.


Asunto(s)
Artemisia , Aceites Volátiles , Piper nigrum , Sistemas de Secreción Tipo II , Animales , Lipólisis , Aceites Volátiles/farmacología
4.
Int J Food Microbiol ; 331: 108732, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-32521374

RESUMEN

The present study aimed to evaluate the anti-quorum sensing (anti-QS) and anti-proteolytic potentials of tarragon essential oil (TEO) and its major compounds against food-associated Pseudomonas spp. The activities were verified by in vitro, in silico and in situ approaches. In this work, methyl eugenol (ME)- and ß-phellandrene (ß-PH)-rich TEO was investigated. TEO at subMIC increased the percentage of saturated fatty acids in the bacterial membranes (from 7 to 22%) and exhibited anti-quorum sensing via decreasing the efficiency of QS autoinducer synthesis [3-oxo-C12-HSL (from 2.028 µg/mL to

Asunto(s)
Artemisia/química , Aceites Volátiles/farmacología , Proteolisis/efectos de los fármacos , Pseudomonas/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/aislamiento & purificación , 4-Butirolactona/farmacología , Animales , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Simulación por Computador , Peces/microbiología , Homoserina/análogos & derivados , Homoserina/aislamiento & purificación , Homoserina/farmacología , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Pseudomonas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA