Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMJ Open ; 14(1): e074858, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38176874

RESUMEN

INTRODUCTION: Sarcopenia is characterised by age-related loss of skeletal muscle and function and is associated with risks of adverse outcomes. The prevalence of sarcopenia increases due to ageing population and effective interventions is in need. Previous studies showed that ß-hydroxy ß-methylbutyrate (HMB) supplement and vibration treatment (VT) enhanced muscle quality, while the coapplication of the two interventions had further improved muscle mass and function in sarcopenic mice model. This study aims to investigate the efficacy of this combination treatment in combating sarcopenia in older people. The findings of this study will demonstrate the effect of combination treatment as an alternative for managing sarcopenia. METHODS AND ANALYSIS: In this single-blinded randomised controlled trial, subjects will be screened based on the Asian Working Group for Sarcopenia (AWGS) 2019 definition. 200 subjects who are aged 65 or above and identified sarcopenic according to the AWGS algorithm will be recruited. They will be randomised to one of the following four groups: (1) Control+ONS; (2) HMB+ONS; (3) VT+ONS and (4) HMB+VT + ONS, where ONS stands for oral nutritional supplement. ONS will be taken in the form of protein formular once/day; HMB supplements will be 3 g/day; VT (35 Hz, 0.3 g, where g=gravitational acceleration) will be received for 20 mins/day and at least 3 days/week. The primary outcome assessments are muscle strength and function. Subjects will be assessed at baseline, 3-month and 6-month post treatment. ETHICS AND DISSEMINATION: This study was approved by Joint CUHK-NTEC (The Chinese University of Hong Kong and New Territories East Cluster) Clinical Research Management Office (Ref: CRE-2022.223-T) and conformed to the Declaration of Helsinki. Trial results will be published in peer-reviewed journals and disseminated at academic conferences. TRIAL REGISTRATION NUMBER: NCT05525039.


Asunto(s)
Sarcopenia , Animales , Ratones , Humanos , Anciano , Sarcopenia/complicaciones , Músculo Esquelético , Fuerza Muscular , Envejecimiento , Hong Kong , Suplementos Dietéticos , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Nutrients ; 15(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37630803

RESUMEN

This paper presents a systematic review of studies investigating the effects of fatty acid supplementation in potentially preventing and treating sarcopenia. PubMed, Embase, and Web of Science databases were searched using the keywords 'fatty acid' and 'sarcopenia'. Results: A total of 14 clinical and 11 pre-clinical (including cell and animal studies) studies were included. Of the 14 clinical studies, 12 used omega-3 polyunsaturated fatty acids (PUFAs) as supplements, 1 study used ALA and 1 study used CLA. Seven studies combined the use of fatty acid with resistant exercises. Fatty acids were found to have a positive effect in eight studies and they had no significant outcome in six studies. The seven studies that incorporated exercise found that fatty acids had a better impact on elderlies. Four animal studies used novel fatty acids including eicosapentaenoic acid, trans-fatty acid, and olive leaf extraction as interventions. Three animal and four cell experiment studies revealed the possible mechanisms of how fatty acids affect muscles by improving regenerative capacity, reducing oxidative stress, mitochondrial and peroxisomal dysfunctions, and attenuating cell death. Conclusion: Fatty acids have proven their value in improving sarcopenia in pre-clinical experiments. However, current clinical studies show controversial results for its role on muscle, and thus the mechanisms need to be studied further. In the future, more well-designed randomized controlled trials are required to assess the effectiveness of using fatty acids in humans.


Asunto(s)
Músculos , Sarcopenia , Animales , Humanos , Muerte Celular , Bases de Datos Factuales , Suplementos Dietéticos , Ácido Eicosapentaenoico , Ácidos Grasos/uso terapéutico , Sarcopenia/tratamiento farmacológico
3.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361730

RESUMEN

Sarcopenia is an age-related geriatric syndrome characterized by the gradual loss of muscle mass and function. Low-magnitude high-frequency vibration (LMHFV) was shown to be beneficial to structural and functional outcomes of skeletal muscles, while magnesium (Mg) is a cofactor associated with better indices of skeletal muscle mass and strength. We hypothesized that LMHFV, Mg and their combinations could suppress inflammation and sarcopenic atrophy, promote myogenesis via PI3k/Akt/mTOR pathway in senescence-accelerated mouse P8 (SAMP8) mice and C2C12 myoblasts. Results showed that Mg treatment and LMHFV could significantly decrease inflammatory expression (C/EBPα and LYVE1) and modulate a CD206-positive M2 macrophage population at month four. Mg treatment also showed significant inhibitory effects on FOXO3, MuRF1 and MAFbx mRNA expression. Coapplication showed a synergistic effect on suppression of type I fiber atrophy, with significantly higher IGF-1, MyoD, MyoG mRNA (p < 0.05) and pAkt protein expression (p < 0.0001) during sarcopenia. In vitro inhibition of PI3K/Akt and mTOR abolished the enhancement effects on myotube formation and inhibited MRF mRNA and p85, Akt, pAkt and mTOR protein expressions. The present study demonstrated that the PI3K/Akt/mTOR pathway is the predominant regulatory mechanism through which LMHFV and Mg enhanced muscle regeneration and suppressed atrogene upregulation.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Sarcopenia , Ratones , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Sarcopenia/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Magnesio/farmacología , Vibración , Atrofia Muscular/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Músculo Esquelético/metabolismo , ARN Mensajero , Macrófagos/metabolismo , Suplementos Dietéticos
4.
Arch Osteoporos ; 16(1): 168, 2021 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-34743234

RESUMEN

Fracture liaison services (FLS) have been implemented worldwide, but we present one of the first reported experiences in China. Only 1 out of 226 patients had a secondary fracture within 1 year. This serves as a platform to improving solutions and decreasing imminent fractures for future use nationwide in China. INTRODUCTION: Fracture liaison services (FLS) have been implemented worldwide but we present one of the first reported experiences in China. Vertebral fragility fracture is one of the earliest fracture to occur. The objective of this study was to implement a dedicated fracture service to decrease imminent fractures for future use nationwide in China. METHODS: Patients 50 years or older with a recent vertebral compression fracture were recruited. All patients were offered investigation with DXA scan and blood taking. Treatment was provided with calcium and vitamin D supplements and denosumab injections. The primary outcome was the imminent fracture rate or the re-fracture rate occurring within 2 years of the initial one. Secondary outcomes were bone mineral density (BMD), treatment initiation, adherence to drug, compliance to follow-up, falls, mortality, pain, quality of life, pain-related disability with Roland-Morris Disability Questionnaire (RMDQ), and Oswestry Disability Index (ODI). RESULTS: Two hundred twenty-six patients (n = 226) were analyzed. 0.4% (n = 1) had an imminent fracture within 2 years. 11.1% (n = 25) had a fall within 2 years, in which 1 resulted in a major osteoporotic fracture. 7.1% died (n = 16) within the 2-year time period. 97.8% (n = 221) underwent BMD investigation with an initial DXA scan. One hundred percent (n = 226) had treatment initiation and were prescribed with Denosumab injections. 89.8% (n = 203) were compliant and showed complete adherence to drug therapy over the 2 years. Pain, quality of life, and disability were significantly improved. CONCLUSION: This is the first reported fracture liaison service for vertebral fracture patients reported in China. Future FLS should incorporate muscle and sarcopenic assessments as a routine, and also research on novel interventions in this area would significantly improve patient outcomes.


Asunto(s)
Conservadores de la Densidad Ósea , Fracturas por Compresión , Osteoporosis , Fracturas Osteoporóticas , Fracturas de la Columna Vertebral , Conservadores de la Densidad Ósea/uso terapéutico , China/epidemiología , Humanos , Músculos , Osteoporosis/tratamiento farmacológico , Osteoporosis/epidemiología , Fracturas Osteoporóticas/epidemiología , Calidad de Vida , Prevención Secundaria , Fracturas de la Columna Vertebral/diagnóstico por imagen , Fracturas de la Columna Vertebral/epidemiología
5.
J Cachexia Sarcopenia Muscle ; 12(6): 1393-1407, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34523250

RESUMEN

BACKGROUND: Gut microbiota dysbiosis and sarcopenia commonly occur in the elderly. Although the concept of the gut-muscle axis has been raised, the casual relationship is still unclear. This systematic review analyses the current evidence of gut microbiota effects on muscle/sarcopenia. METHODS: A systematic review was performed in PubMed, Embase, Web of Science, and The Cochrane Library databases using the keywords (microbiota* OR microbiome*) AND (sarcopen* OR muscle). Studies reporting the alterations of gut microbiota and muscle/physical performance were analysed. RESULTS: A total of 26 pre-clinical and 10 clinical studies were included. For animal studies, three revealed age-related changes and relationships between gut microbiota and muscle. Three studies focused on muscle characteristics of germ-free mice. Seventy-five per cent of eight faecal microbiota transplantation studies showed that the recipient mice successfully replicated the muscle phenotype of donors. There were positive effects on muscle from seven probiotics, two prebiotics, and short-chain fatty acids (SCFAs). Ten studies investigated on other dietary supplements, antibiotics, exercise, and food withdrawal that affected both muscle and gut microbiota. Twelve studies explored the potential mechanisms of the gut-muscle axis. For clinical studies, 6 studies recruited 676 elderly people (72.8 ± 5.6 years, 57.8% female), while 4 studies focused on 244 young adults (29.7 ± 7.8 years, 55.4% female). The associations of gut microbiota and muscle had been shown in four observational studies. Probiotics, prebiotics, synbiotics, fermented milk, caloric restriction, and exercise in six studies displayed inconsistent effects on muscle mass, function, and gut microbiota. CONCLUSIONS: Altering the gut microbiota through bacteria depletion, faecal transplantation, and various supplements was shown to directly affect muscle phenotypes. Probiotics, prebiotics, SCFAs, and bacterial products are potential novel therapies to enhance muscle mass and physical performance. Lactobacillus and Bifidobacterium strains restored age-related muscle loss. Potential mechanisms of microbiome modulating muscle mainly include protein, energy, lipid, and glucose metabolism, inflammation level, neuromuscular junction, and mitochondrial function. The role of the gut microbiota in the development of muscle loss during aging is a crucial area that requires further studies for translation to patients.


Asunto(s)
Microbioma Gastrointestinal , Sarcopenia , Simbióticos , Anciano , Animales , Trasplante de Microbiota Fecal , Femenino , Humanos , Masculino , Ratones , Prebióticos , Sarcopenia/etiología , Sarcopenia/terapia
6.
Bone Joint Res ; 10(1): 51-59, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33448869

RESUMEN

AIMS: The effect of the gut microbiota (GM) and its metabolite on bone health is termed the gut-bone axis. Multiple studies have elucidated the mechanisms but findings vary greatly. A systematic review was performed to analyze current animal models and explore the effect of GM on bone. METHODS: Literature search was performed on PubMed and Embase databases. Information on the types and strains of animals, induction of osteoporosis, intervention strategies, determination of GM, assessment on bone mineral density (BMD) and bone quality, and key findings were extracted. RESULTS: A total of 30 studies were included, of which six studies used rats and 24 studies used mice. Osteoporosis or bone loss was induced in 14 studies. Interventions included ten with probiotics, three with prebiotics, nine with antibiotics, two with short-chain fatty acid (SCFA), six with vitamins and proteins, two with traditional Chinese medicine (TCM), and one with neuropeptide Y1R antagonist. In general, probiotics, prebiotics, nutritional interventions, and TCM were found to reverse the GM dysbiosis and rescue bone loss. CONCLUSION: Despite the positive therapeutic effect of probiotics, prebiotics, and nutritional or pharmaceutical interventions on osteoporosis, there is still a critical knowledge gap regarding the role of GM in rescuing bone loss and its related pathways. Cite this article: Bone Joint Res 2021;10(1):51-59.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA