Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 17(8): e0273267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36040915

RESUMEN

Although iron is an essential element for hemoglobin and cytochrome synthesis, excessive intestinal iron absorption-as seen in dietary iron supplementation and hereditary disease called thalassemia-could interfere with transepithelial transport of calcium across the intestinal mucosa. The underlying cellular mechanism of iron-induced decrease in intestinal calcium absorption remains elusive, but it has been hypothesized that excess iron probably negates the actions of 1,25-dihydroxyvitamin D [1,25(OH)2D3]. Herein, we exposed the 1,25(OH)2D3-treated epithelium-like Caco-2 monolayer to FeCl3 to demonstrate the inhibitory effect of ferric ion on 1,25(OH)2D3-induced transepithelial calcium transport. We found that a 24-h exposure to FeCl3 on the apical side significantly decreased calcium transport, while increasing the transepithelial resistance (TER) in 1,25(OH)2D3-treated monolayer. The inhibitory action of FeCl3 was considered rapid since 60-min exposure was sufficient to block the 1,25(OH)2D3-induced decrease in TER and increase in calcium flux. Interestingly, FeCl3 did not affect the baseline calcium transport in the absence of 1,25(OH)2D3 treatment. Furthermore, although ascorbic acid is often administered to maximize calcium solubility and to enhance intestinal calcium absorption, it apparently had no effect on calcium transport across the FeCl3- and 1,25(OH)2D3-treated Caco-2 monolayer. In conclusion, apical exposure to ferric ion appeared to negate the 1,25(OH)2D3-stimulated calcium transport across the intestinal epithelium. The present finding has, therefore, provided important information for development of calcium and iron supplement products and treatment protocol for specific groups of individuals, such as thalassemia patients and pregnant women.


Asunto(s)
Calcitriol , Calcio , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Células CACO-2 , Calcitriol/metabolismo , Calcitriol/farmacología , Calcio/metabolismo , Calcio de la Dieta/metabolismo , Electrólitos/metabolismo , Femenino , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Hierro/metabolismo , Hierro de la Dieta/metabolismo , Embarazo
2.
Arch Biochem Biophys ; 657: 15-22, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30217510

RESUMEN

Long-term high-calcium intake and intestinal calcium hyperabsorption are hazardous to the body. It is hypothesized that enterocytes possess mechanisms for preventing superfluous calcium absorption, including secretion of negative regulators of calcium absorption and utilization of calcium-sensing receptor (CaSR) to detect luminal calcium. Herein, Caco-2 monolayers were treated with high doses of 1,25(OH)2D3 to induce calcium hyperabsorption or directly exposed to high apical calcium. The expression of counterregulatory factor of calcium absorption, fibroblast growth factor (FGF)-23, was also investigated in the intestine of lactating rats, which physiologically exhibit calcium hyperabsorption. We found that FGF-23 expression was enhanced in all intestinal segments of lactating rats. In Caco-2 monolayers, high apical calcium and 1,25(OH)2D3 induced FGF-23 secretion into culture media. FGF-23 antagonized 1,25(OH)2D3-induced calcium transport and led to a significant, but small, change in paracellular permeability. Furthermore, high-dose 1,25(OH)2D3 upregulated FGF-23 expression, which was prevented by CaSR inhibitors. Activation of apical CaSR by cinacalcet and AC-265347 abolished 1,25(OH)2D3-induced calcium transport in a dose-dependent manner. In conclusion, the intestinal FGF-23 expression was upregulated in conditions with calcium hyperabsorption, presumably to help protect against excessive calcium absorption, while CaSR probably monitored calcium in the lumen and induced FGF-23 production for preventing superfluous calcium uptake.


Asunto(s)
Benzotiazoles/farmacología , Calcitriol/metabolismo , Calcio/metabolismo , Cinacalcet/farmacología , Absorción Intestinal/efectos de los fármacos , Receptores Sensibles al Calcio/agonistas , Animales , Células CACO-2 , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Lactancia/metabolismo , Embarazo , Ratas Sprague-Dawley , Regulación hacia Arriba
3.
J Physiol Sci ; 68(3): 221-232, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29484538

RESUMEN

Osteoporosis and derangement of calcium homeostasis are common complications of thalassemia. Despite being an important process for bone and calcium metabolism, little is known about intestinal calcium transport in thalassemia. Recent reports of decreases in both intestinal calcium transport and bone mineral density in thalassemic patients and animal models suggested that defective calcium absorption might be a cause of thalassemic bone disorder. Herein, the possible mechanisms associated with intestinal calcium malabsorption in thalassemia are discussed. This includes alterations in the calcium transporters and hormonal controls of the transcellular and paracellular intestinal transport systems in thalassemia. In addition, the effects of iron overload on intestinal calcium absorption, and the reciprocal interaction between iron and calcium transport in thalassemia are elaborated. Understanding the mechanisms underlining calcium malabsorption in thalassemia would lead to development of therapeutic agents and mineral supplements that restore calcium absorption as well as prevent osteoporosis in thalassemic patients.


Asunto(s)
Calcio/metabolismo , Mucosa Intestinal/metabolismo , Hierro/metabolismo , Talasemia/metabolismo , Animales , Huesos/metabolismo , Humanos , Absorción Intestinal/fisiología , Transporte Iónico/fisiología
4.
Arch Biochem Biophys ; 640: 10-16, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29317227

RESUMEN

Overdose of oral calcium supplement and excessive intestinal calcium absorption can contribute pathophysiological conditions, e.g., nephrolithiasis, vascular calcification, dementia, and cardiovascular accident. Since our previous investigation has indicated that fibroblast growth factor (FGF)-23 could abolish the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-enhanced calcium absorption, we further hypothesized that FGF-23 produced locally in the enterocytes might be part of a local negative feedback loop to regulate calcium absorption. Herein, 1,25(OH)2D3 was found to enhance the transcellular calcium transport across the epithelium-like Caco-2 monolayer, and this stimulatory effect was diminished by preceding prolonged exposure to high-dose 1,25(OH)2D3 or high concentration of apical ionized calcium. Pretreatment with a neutralizing antibody for FGF-23 prevented this negative feedback regulation of calcium hyperabsorption induced by 1,25(OH)2D3. FGF-23 exposure completely abolished the 1,25(OH)2D3-enhanced calcium transport. Western blot analysis revealed that FGF-23 expression was upregulated in a dose-dependent manner by 1,25(OH)2D3 or apical calcium exposure. Finally, calcium-sensing receptor (CaSR) inhibitors were found to prevent the apical calcium-induced suppression of calcium transport. In conclusion, prolonged exposure to high apical calcium and calcium hyperabsorption were sensed by CaSR, which, in turn, increased FGF-23 expression to suppress calcium transport. This local negative feedback loop can help prevent unnecessary calcium uptake and its detrimental consequences.


Asunto(s)
Calcitriol/metabolismo , Calcio/metabolismo , Factores de Crecimiento de Fibroblastos/biosíntesis , Mucosa Intestinal/metabolismo , Células CACO-2 , Factor-23 de Crecimiento de Fibroblastos , Humanos , Absorción Intestinal , Transporte Iónico , Receptores Sensibles al Calcio/metabolismo
5.
Am J Physiol Endocrinol Metab ; 306(2): E177-88, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24302005

RESUMEN

During lactation, osteoclast-mediated bone resorption and intestinal calcium hyperabsorption help provide extra calcium for lactogenesis. Since the suckling-induced surge of pituitary prolactin (PRL) rapidly stimulates calcium absorption in lactating rats, it is hypothesized that pre-suckling oral calcium supplementation should be an efficient regimen to shift the calcium source from bone to diet, thereby slowing lactation-induced osteopenia. Our results showed that 30-min suckling markedly stimulated maternal duodenal calcium transport, which returned to the baseline at 45 min. Lactating rats given 4 mg/kg per dose calcium via a gavage tube at 90 min pre-suckling 4 doses a day for 14 days prevented a decrease in bone mineral density (BMD) of long bones and vertebrae. On the other hand, a single-dose supplementation, despite the same amount of calcium per day, appeared less effective. Because glucose and galactose further stimulated duodenal calcium transport in lactating rats, pre-suckling calcium supplement containing both sugars successfully normalized plasma ionized calcium and led to better bone gain than that with calcium alone. A histomorphometric study revealed that lactating rats given pre-suckling calcium plus monosaccharide supplement manifested greater trabecular bone volume and thickness and exhibited less eroded surface than in vehicle-treated lactating rats. Beneficial effects of the 14-day calcium supplementation persisted until 6 mo postweaning in dams and also elevated the baseline BMD of the offspring. In conclusion, our proof-of-concept study has corroborated that pre-suckling calcium supplements, especially regimens containing monosaccharides, are efficient in preventing osteopenia in lactating rats and could increase bone density in both breastfeeding mothers and neonates.


Asunto(s)
Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/prevención & control , Calcio de la Dieta/farmacología , Lactancia/fisiología , Animales , Animales Recién Nacidos , Animales Lactantes , Densidad Ósea/efectos de los fármacos , Calcio de la Dieta/uso terapéutico , Suplementos Dietéticos , Femenino , Embarazo , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
6.
Phytomedicine ; 19(13): 1147-55, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22951392

RESUMEN

Phytoestrogens have attracted attention for their potential in the prevention of postmenopausal osteoporosis. Recently, phytoestrogen-rich herb Pueraria mirifica has been demonstrated to possess an osteogenic effect on bone in ovariectomized rats, but its underlying cellular mechanism was not known. Here, we investigated the effects of P. mirifica extract and its major isoflavone compound, puerarin, on cell viability, cell proliferation and the expression of differentiation markers in rat osteoblast-like UMR106 cells. After exposure to 17ß-estradiol (E2), genistein, P. mirifica extract and puerarin, proliferation but not viability of UMR106 cells was markedly decreased. Quantitative real-time PCR revealed that P. mirifica extract and puerarin significantly increased the mRNA expression of alkaline phosphatase (ALP) and osteoprotegerin, but not Runx2, osterix or osteocalcin. Puerarin also decreased the mRNA expression of receptor activator of nuclear factor-κB ligand, an osteoclastogenic factor, suggesting that it could induce bone gain by enhancing osteoblast differentiation and suppressing osteoclast function. Furthermore, after an exposure to high affinity estrogen receptor (ER) antagonist (ICI182780), the E2-, genistein-, P. mirifica extract- and puerarin-induced upregulation of ALP expressions were completely abolished. It could be concluded that P. mirifica extract and puerarin induced osteoblast differentiation rather than osteoblast proliferation in an ER-dependent manner. The present findings, therefore, corroborated the potential benefit of P. mirifica extract and puerarin in the prevention and treatment of postmenopausal osteoporosis.


Asunto(s)
Isoflavonas/farmacología , Osteoblastos/efectos de los fármacos , Fitoestrógenos/farmacología , Pueraria/química , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Estradiol , Genisteína , Humanos , Isoflavonas/análisis , Osteoporosis Posmenopáusica/prevención & control , Extractos Vegetales/farmacología , ARN Mensajero/metabolismo , Ratas , Receptores de Estrógenos/metabolismo , Regulación hacia Arriba/efectos de los fármacos
7.
Histochem Cell Biol ; 134(5): 483-91, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20890709

RESUMEN

Besides calcium accretion in the cortical envelope, a marked increase in the length of long bone was observed in pregnant and lactating rats, and thus the growth plate change was anticipated. Since several bone changes, such as massive trabecular bone resorption in late lactation, were found to be prolactin (PRL)-dependent, PRL may also be responsible for the maternal bone elongation. Herein, we investigated the growth plate change and possible chondroregulatory roles of PRL in the tibiae of rats at mid-pregnancy until 15 days postweaning. We found that the tibial length of lactating rats was increased and was inversely correlated with the total growth plate height, as well as the heights of proliferating zone (PZ) and hypertrophic zone (HZ), but not the resting zone (RZ). Chondrocytes in all zones expressed PRL receptors as visualized by immunohistochemistry, suggesting that the growth plate cartilage was a target of PRL action. Further investigations in lactating rats treated with an inhibitor of pituitary PRL release, bromocriptine, with or without PRL supplement, revealed the PRL-induced decreases in total growth plate height and HZ height from early to late lactation. However, decreases in RZ and PZ heights were observed only in late and mid-lactation, respectively. Thus, this was the first report on the chondroregulatory action of PRL on the growth plate of long bone in lactating rats. The results provided better understanding of the maternal bone adaptation during lactation.


Asunto(s)
Condrocitos/citología , Condrogénesis/fisiología , Placa de Crecimiento/anatomía & histología , Lactancia/fisiología , Prolactina/fisiología , Tibia/anatomía & histología , Animales , Desarrollo Óseo/fisiología , Bromocriptina/farmacología , Condrocitos/metabolismo , Femenino , Placa de Crecimiento/metabolismo , Antagonistas de Hormonas/farmacología , Técnicas para Inmunoenzimas , Embarazo , Prolactina/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Receptores de Prolactina/metabolismo , Tibia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA