RESUMEN
Transgenic Lemna minor has been used successfully to produce several biotherapeutic proteins. For plant-produced mAbs specifically, the cost of protein A capture step is critical as the economic benefits of plant production systems could be erased if the downstream processing ends up being expensive. To avoid potential modification of mAb or fouling of expensive protein A resins, a rapid and efficient removal of phenolics from plant extracts is desirable. We identified major phenolics in Lemna extracts and evaluated their removal by adsorption to PVPP, XAD-4, IRA-402, and Q-Sepharose. Forms of apigenin, ferulic acid, and vitexin comprised â¼ 75% of the total phenolics. Screening of the resins with pure ferulic acid and vitexin indicated that PVPP would not be efficient for phenolics removal. Analysis of the breakthrough fractions of phenolics adsorption to XAD-4, IRA-402, and Q-Sepharose showed differences in adsorption with pH and in the type of phenolics adsorbed. Superior dynamic binding capacities (DBC) were observed at pH 4.5 than at 7.5. To evaluate the cost impact of a phenolics removal step before protein A chromatography, a mAb purification process was simulated using SuperPro Designer 7.0. The economic analysis indicated that addition of a phenolics adsorption step would increase mAb production cost only 20% by using IRA-402 compared to 35% for XAD-4 resin. The cost of the adsorption step is offset by increasing the lifespan of protein A resin and a reduction of overall mAb production cost could be achieved by using a phenolics removal step.
Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/economía , Fenoles/aislamiento & purificación , Extractos Vegetales/inmunología , Plantas Modificadas Genéticamente/inmunología , Adsorción , Anticuerpos Monoclonales/aislamiento & purificación , Cromatografía de Afinidad , Costos y Análisis de Costo , Concentración de Iones de Hidrógeno , Extractos Vegetales/química , Proteína Estafilocócica A/inmunologíaRESUMEN
Several pharmaceutical protein products made in transgenic plant hosts are advancing through clinical trials. Plant hosts present a different set of impurities from which the proteins must be purified compared to other expression hosts such as mammalian cells. In this work, phenolic compounds present in extracts of monoclonal antibody (mAb)-expressing Lemna minor were examined. Two different extraction pHs were evaluated to assess the effect of extraction condition on the concentration of mAb and phenolics in the extracts. The extract prepared at pH 4.5 had an enriched level of mAb relative to native protein when compared to a pH 7.5 extract although similar overall mAb was extracted at either pH. Slightly more mAb was recovered from the pH 3 elution of the pH 4.5 extract run on a MabSelect column than was recovered from the pH 7.5 extract. Phenolic levels in extracts were assessed by spectrophotometry, Folin-Ciocalteu assay and by profiling on RP-HPLC. The Folin-Ciocalteu assay results did not agree with those obtained by the other two methods. Therefore phenolic levels were quantified by RP-HPLC comparing the total area of phenolic peaks to those of reference phenolic compounds. The pH 7.5 extract had 22% less phenolics than the pH 4.5 extract. Acidic precipitation of the pH 7.5 extract resulted in further reduction of phenolics originally present in the pH 7.5 extract. The total phenolics present in the extracts were effectively removed by incubation of extracts with a commercially available anion exchange resin, Amberlite IRA-402. We anticipate that early removal of phenolic compounds will prolong the life of more expensive affinity columns used for the purification of potential pharmaceutical proteins and should therefore be considered in process development involving proteins extracted from transgenic plant hosts.
Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Araceae/metabolismo , Fenoles/análisis , Extractos Vegetales/química , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Anticuerpos Monoclonales/metabolismo , Araceae/genética , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión , Concentración de Iones de Hidrógeno , Plantas Modificadas Genéticamente/genética , Proteínas Recombinantes/metabolismo , EspectrofotometríaRESUMEN
The use of recombinant gene technologies by the vaccine industry has revolutionized the way antigens are generated, and has provided safer, more effective means of protecting animals and humans against bacterial and viral pathogens. Viral and bacterial antigens for recombinant subunit vaccines have been produced in a variety of organisms. Transgenic plants are now recognized as legitimate sources for these proteins, especially in the developing area of oral vaccines, because antigens have been shown to be correctly processed in plants into forms that elicit immune responses when fed to animals or humans. Antigens expressed in maize (Zea mays) are particularly attractive since they can be deposited in the natural storage vessel, the corn seed, and can be conveniently delivered to any organism that consumes grain. We have previously demonstrated high level expression of the B-subunit of Escherichia coli heat-labile enterotoxin and the spike protein of swine transmissible gastroenteritis in corn, and have demonstrated that these antigens delivered in the seed elicit protective immune responses. Here we provide additional data to support the potency, efficacy, and stability of recombinant subunit vaccines delivered in maize seed.