Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artif Cells Nanomed Biotechnol ; 47(1): 3994-4000, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31588805

RESUMEN

Objective: This research was aimed to detect the functions of Lycium barbarum polysaccharides (LBPs) on oxygen and glucose deprivation (OGD) injury and potential mechanisms at PC-12 cells. Methods: CCK-8, flow cytometry and reactive oxygen species (ROS) assays were used to detect OGD, LBPs and miR-24 effects on cell viability, apoptosis, and oxidative stress. MiR-24 was transfected and texted by transfection and qRT-PCR. Moreover, the related-protein levels of apoptosis, autophagy and pathways were tested by Western blotting. Results: LBPs significantly enhanced cell viability , inhibited cell apoptosis, autophagy and ROS level in OGD injury. In addition, miR-24 expression was declined in OGD-treated cells, while it was elevated when added LBPs. The preventive effects of LBPs on PC-12 cell damage induced by OGD were reversed by down-regulating miR-24. Furthermore, miR-24 inhibitor declined LBPs-induced change in Wnt/ß-catenin and JAK1/STAT3 pathways in OGD-injuried cells. Conclusions: LBPs exhibited preventive effects via up-regulating miR-122 and activating Wnt/ß-catenin and JAK1/STAT3 pathways in OGD-induced PC-12 cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Glucosa/deficiencia , Hipoxia/patología , MicroARNs/genética , Animales , Supervivencia Celular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Hipoxia/genética , Hipoxia/metabolismo , MicroARNs/metabolismo , Células PC12 , Fosforilación/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
2.
Int J Biol Macromol ; 60: 181-5, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23732328

RESUMEN

In this paper, retrograded potato starches treated by oxalic, hydrochloric and citric acids and/with amylase respectively, as seed crystals, are added into maize starch paste to increase maize starch retrogradation rate. The results show that addition of seed accelerates maize starch retrogradation greatly. Seed prepared from retrograded potato starch treated by oxalic acid increases maize starch retrogradation rate most, from 1.5% to 49%. The results of IR spectra of retrograded maize starch derived from different seeds show that double helix, not hydrogen bond, probably forms at stage of seed growth during retrogradation. The results of IR spectra, X-ray and SEM indicate that treatment of retrograded potato starch with oxalic acid leads to formation of more hydrogen bonds and an increase of seed crystal planes, which markedly promotes the growth of the seed. Retrogradation of maize starch by seeding method surely includes a stage of crystal growth through double helix in a way different from normal maize starch retrogradation.


Asunto(s)
Semillas/química , Solanum tuberosum/química , Almidón/química , Zea mays/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA