Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hepatology ; 72(6): 1935-1948, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32145089

RESUMEN

BACKGROUND AND AIMS: Hepatitis B virus (HBV) infection is ranked among the top health priorities worldwide. Accumulating evidence suggests that HBV infection and replication are closely associated with liver metabolism. The liver X receptors (LXRs), which belong to the superfamily of nuclear hormone receptors, are important physiological regulators of lipid and cholesterol metabolism. However, the association between the LXR pathway and HBV infection remains largely unclear. APPROACH AND RESULTS: In this study, the antiviral activity of LXR agonists was investigated using multiple HBV cellular models. We observed that in HBV-infected primary human hepatocytes (PHHs), synthetic LXR agonists (T0901317, GW3965, and LXR-623), but not an LXR antagonist (SR9238), potently inhibited HBV replication and gene expression, as demonstrated by substantial reductions in viral RNA, DNA, and antigen production following agonist treatment. However, covalently closed circular DNA (cccDNA) levels were not significantly reduced by the agonists. In addition, no rebound in viral replication was observed after treatment withdrawal, indicating a long-lasting inhibitory effect. These results suggest that LXR agonists decrease the transcriptional activity of cccDNA. In contrast, no significant anti-HBV effect was observed in HepG2-derived cell lines. Interestingly, LXR agonist treatment strongly reduced cholesterol 7α-hydroxylase 1 (CYP7A1) mRNA levels. Knockdown of CYP7A1 gene expression with small interfering RNA inhibited HBV activity in PHHs, suggesting CYP7A1 as a potential factor contributing to the antiviral effects of LXR agonists. CONCLUSIONS: We found that activation of the LXR pathway with synthetic LXR agonists could elicit potent anti-HBV activity in PHHs, possibly through sustained suppression of cccDNA transcription. Our work highlights the therapeutic potential of targeting the LXR pathway for the treatment of chronic HBV infection.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B/tratamiento farmacológico , Receptores X del Hígado/agonistas , Hígado/metabolismo , Antígenos Virales/genética , Antígenos Virales/aislamiento & purificación , Antivirales/uso terapéutico , Benzoatos/farmacología , Benzoatos/uso terapéutico , Bencilaminas/farmacología , Bencilaminas/uso terapéutico , Células Cultivadas , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , ADN Viral/aislamiento & purificación , Evaluación Preclínica de Medicamentos , Técnicas de Silenciamiento del Gen , Hepatitis B/virología , Virus de la Hepatitis B/fisiología , Hepatocitos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Hidrocarburos Fluorados/farmacología , Hidrocarburos Fluorados/uso terapéutico , Indazoles/farmacología , Indazoles/uso terapéutico , Hígado/citología , Receptores X del Hígado/antagonistas & inhibidores , Receptores X del Hígado/metabolismo , Cultivo Primario de Células , ARN Viral/aislamiento & purificación , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Replicación Viral/efectos de los fármacos
2.
Hepatology ; 70(1): 11-24, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30664279

RESUMEN

Hepatitis B e antigen (HBeAg) is an important immunomodulator for promoting host immune tolerance during chronic hepatitis B (CHB) infection. In patients with CHB, HBeAg loss and seroconversion represent partial immune control of CHB infection and are regarded as valuable endpoints. However, the current approved treatments have only a limited efficacy in achieving HBeAg seroconversion in HBeAg-positive patients. Hepatitis B virus (HBV) core protein has been recognized as an attractive antiviral target, and two classes of core protein allosteric modulator (CpAM) have been discovered: the phenylpropenamides (PPAs) and the heteroaryldihydropyrimidines (HAPs). However, their differentiation and potential therapeutic benefit beyond HBV DNA inhibition remain to be seen. Here, we show that in contrast to PPA series compound AT-130, a HAP CpAM, HAP_R01, reduced HBeAg levels in multiple in vitro and in vivo HBV experimental models. Mechanistically, we found that HAP_R01 treatment caused the misassembly of capsids formed by purified HBeAg in vitro. In addition, HAP_R01 directly reduces HBeAg levels by inducing intracellular precore protein misassembly and aggregation. Using a HAP_R01-resistant mutant, we found that HAP_R01-mediated HBeAg and core protein reductions were mediated through the same mechanism. Furthermore, HAP_R01 treatment substantially reduced serum HBeAg levels in an HBV mouse model. Conclusion: Unlike PPA series compound AT-130, HAP_R01 not only inhibits HBV DNA levels but also directly reduces HBeAg through induction of its misassembly. HAP_R01, as well as other similar CpAMs, has the potential to achieve higher anti-HBeAg seroconversion rates than currently approved therapies for patients with CHB. Our findings also provide guidance for dose selection when designing clinical trials with molecules from HAP series.


Asunto(s)
Antígenos e de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B/tratamiento farmacológico , Pirimidinas/farmacología , Regulación Alostérica , Evaluación Preclínica de Medicamentos , Células Hep G2 , Humanos , Terapia Molecular Dirigida , Pirimidinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA