Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 249: 112372, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31683036

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Recipes (Qingre Jiedu (QJ), Wenyang Yiqi (WYYQ) and Huo Xue (HX)) in Qishen granules (QSG) are believed to synergistically exert cardio-protective effects. However, the underlying pattern of each decomposed recipe in QSG and their synergistic effects in the treatment of heart failure (HF) are not clear. OBJECTIVE: The purpose of this study is to explore the biological contributions of decomposed recipes to therapeutic effects of QSG and reveal the pharmacological mechanism of QSG in treating HF. MATERIALS AND METHODS: The therapeutic effects of QSG or its recipes on heart failure were examined in wet-lab at both transcription and phenotypic level using HF Sprague-Dawley rats. Sequencing and transcriptome analyses were performed using in silico approaches including identification of differentially expressed genes, pathway enrichment and protein-protein interaction network studies. Specially, an optimized in silico quantitative pathway analysis that maximally extracted gene expression information was developed to reveal differentially expressed pathways (DEPs) among various groups, and is publicly available as R package QPA on GitHub (https://github.com/github-gs/QPA). Finally, the HF-related genes predicted using DEP approach were validated by quantitative real-time polymerase chain reaction and western blot. RESULTS: Multiple key genes and the associated signaling pathways were shown to be highly relevant for the therapeutic effect of QSG. Decreased expression of Spp1 gene required for inflammatory signaling and profibrotic signaling were observed in failing hearts treated with QJ, WYYQ and HX. Decreased expression of Cx3cr1 gene required for inflammatory signaling was observed in failing hearts treated with WYYQ and HX. Decreased expression of Myc gene required for oxidative stress and Fgfr2 gene required for profibrotic signaling were observed in failing hearts treated with HX and WYYQ, respectively. Increased expression of Adcy1 gene required for cAMP-PKA signaling cascade was observed in failing hearts treated with WYYQ and HX. CONCLUSIONS: Our study suggests that QJ, WYYQ and HX recipes in QSG achieve synergistic and complementary therapeutic effects through alleviating inflammatory responses, attenuating ventricular remodeling and enhancing myocardial energy supply.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Corazón/efectos de los fármacos , Animales , Perfilación de la Expresión Génica/métodos , Masculino , Miocardio/patología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
2.
Front Pharmacol ; 10: 1353, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824313

RESUMEN

Chronic liver disease (CLD) has become a major global health problem while herb prescriptions are clinically observed with significant efficacy. Three classical Traditional Chinese Medicine (TCM) formulae, Yinchenhao Decoction (YCHT), Huangqi Decoction (HQT), and Yiguanjian (YGJ) have been widely applied in China to treat CLD, but no systematic study has yet been published to investigate their common and different mechanism of action (MOA). Partial limitation may own to deficiency of effective bioinformatics methods. Here, a computational framework of comparative network pharmacology is firstly proposed and then applied to herbal recipes for CLD disease. The analysis showed that, the three formulae modulate CLD mainly through functional modules of immune response, inflammation, energy metabolism, oxidative stress, and others. On top of that, each formula can target additional unique modules. Typically, YGJ ingredients can uniquely target the ATP synthesis and neurotransmitter release cycle. Interestingly, different formulae may regulate the same functional module in different modes. For instance, YCHT and YGJ can activate oxidative stress-related genes of SOD family while HQT are found to inhibit SOD1 gene. Overall, our framework of comparative network pharmacology proposed in our work may not only explain the MOA of different formulae treating CLD, but also provide hints to further investigate the biological basis of CLD subtypes.

3.
Front Pharmacol ; 9: 918, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30158870

RESUMEN

Flavonoids are the largest class of plant polyphenols, with common structure of diphenylpropanes, consisting of two aromatic rings linked through three carbons and are abundant in both daily diets and medicinal plants. Fueled by the recognition of consuming flavonoids to get better health, researchers became interested in deciphering how flavonoids alter the functions of human body. Here, systematic studies were performed on 679 flavonoid compounds and 481 corresponding targets through bioinformatics analysis. Multiple human diseases related pathways including cancers, neuro-disease, diabetes, and infectious diseases were significantly regulated by flavonoids. Specific functions of each flavonoid subclass were further analyzed in both target and pathway level. Flavones and isoflavones were significantly enriched in multi-cancer related pathways, flavan-3-ols were found focusing on cellular processing and lymphocyte regulation, flavones preferred to act on cardiovascular related activities and isoflavones were closely related with cell multisystem disorders. Relationship between chemical constitution fragment and biological effects indicated that different side chain could significantly affect the biological functions of flavonoids subclasses. Results will highlight the common and preference functions of flavonoids and their subclasses, which concerning their pharmacological and biological properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA