Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Animals (Basel) ; 13(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37174594

RESUMEN

This study was conducted to investigate the effects of dietary multi-enzyme (multi-carbohydrase and phytase complex, MCPC) supplementation on digestibility, growth performance, bone mineralization, and carcass yield and traits in growing-finishing pigs fed diets with adequate or deficient net energy (NE), amino acids (AA), calcium (Ca) and phosphorus (P) levels. A total of 576 crossbred [Duroc × (Landrace × Yorkshire)] barrows (~25 kg) were fed one of the six diets till live weight approached 130 kg. Basal diets included a positive control (PC), negative control 1 (NC1) and 2 (NC2), while another three diets were prepared by adding MCPC to the three basal diets. The final body weight was lower (p < 0.05) in NC2 than in NC1 and PC treatments, while overall feed intake and feed-gain ratio were higher (p < 0.05) in NC1 and NC2 than in PC treatment. The NC2 treatment showed lower (p < 0.05) carcass weight but higher (p < 0.05) lean meat percentage than the PC treatment. The apparent ileal digestibility (AID) of gross energy (GE), crude protein (CP) and AA was decreased (p < 0.05) or tended (p < 0.10) to decrease in NC1 and/or NC2 diets compared with a PC diet. MCPC supplementation improved (p < 0.05) AID of Ca, P and AA (Lys, Leu, Val, Phe, Gly, Tyr and Pro), apparent total-tract digestibility (ATTD) of GE, CP, bone strength, Ca, and P retention. In conclusion, MCPC supplementation improved nutrient digestibility, bone mineralization, and growth performance of fattening pigs, regardless of the nutritional level of the basal diet.

2.
Front Vet Sci ; 9: 958056, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246320

RESUMEN

The objective of this study was to investigate the toxic effects of a combination of cadmium (Cd), lead (Pb), mercury (Hg), and chromium (Cr) on laying performance, egg quality, serum biochemical parameters, and oxidative stress of laying hens, as well as the alleviating action of dietary supplementation of selenized yeast. A total of 160 Lohmann pink-shell laying hens (63-week-old) were randomly divided into four treatments with 10 replicates of four hens each. The treatments were the corn-soybean meal basal diet (control; CON), the CON diet supplemented with 0.4 mg selenium (Se)/kg from selenized yeast (Se); combined heavy metals group: the basal diet supplemented with 5 mg Cd/kg, 50 mg Pb/kg, 3 mg Hg/kg, and 5 mg Cr/kg (HEM), and the HEM diet supplemented with 0.4 mg Se/kg from selenized yeast (HEM+Se). The experimental period lasted for 12 weeks. The HEM diet decreased hen-day egg production, feed conversion ratio (FCR), and egg white quality (P < 0.05), but increased (P < 0.05) glutamic oxalacetic transaminase (AST) activity in the serum. HEM induced higher malondialdehyde (MDA) and reactive oxygen species (ROS) in the serum, liver, and ovary and significantly decreased (P < 0.05) the activity of total superoxide dismutase (SOD) and tended to decrease glutathione S-transferase (GST) (P = 0.09) in the serum. Meanwhile, HEM significantly decreased (P < 0.05) activity of SOD, GST, glutathione peroxidase (GPX), and glutathione (GSH) in the liver, and the activity of GPX and GSH in the ovary. Se addition of 0.4 mg/kg significantly (P < 0.05) improved hen-day egg production and FCR and decreased AST concentration and increased some enzyme activity in the serum, liver, and ovary. In conclusion, dietary HEM exposure depressed laying performance, and egg white quality was likely due to an impaired antioxidant capacity, disrupted hepatic function, and elevated HEM accumulation in the egg yolk and egg white of laying hens. Se addition of 0.4 mg/kg ameliorated toxic effects of HEM on laying performance, oxidative stress, and hepatic function.

3.
Front Microbiol ; 13: 849067, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602082

RESUMEN

This study was carried out to evaluate the effects of supplemental zinc methionine (Zn-Met) on growth performance, immune function, and intestinal health of meat ducks challenged with avian pathogenic Escherichia coli (APEC). A total of 480 1-day-old Cherry Valley male ducks were randomly assigned to 8 treatments with 10 replicates, each replicate containing 10 ducks. A 4 × 2 factor design was used with four dietary zinc levels (0, 30, 60, 120 mg Zn/kg in the form Zn-Met was added to the corn-soybean basal diet) and challenged with or without APEC at 8-days-old ducks. The trial lasted for 14 days. The results showed that a dietary Zn-Met supplementation significantly increased body weight (BW) of 14 days and BW gain, and decreased mortality during 7-14-days-old ducks (p < 0.05). Furthermore, dietary 30, 60, 120 mg/kg Zn-Met supplementation noticeably increased the thymus index at 2 days post-infection (2 DPI) and 8 DPI (p < 0.05), and 120 mg/kg Zn-Met enhanced the serum IgA at 2 DPI and IgA, IgG, IgM, C3 at 8 DPI (p < 0.05). In addition, dietary 120 mg/kg Zn-Met supplementation dramatically increased villus height and villus height/crypt depth (V/C) of jejunum at 2 DPI and 8 DPI (p < 0.05). The TNF-α and IFN-γ mRNA expression were downregulated after supplemented with 120 mg/kg Zn-Met in jejunum at 8 DPI (p < 0.05). Moreover, dietary 120 mg/kg Zn-Met supplementation stimulated ZO-3, OCLN mRNA expression at 2 DPI and ZO-2 mRNA expression in jejunum at 8 DPI (p < 0.05), and improved the MUC2 concentration in jejunum at 2 DPI and 8 DPI (p < 0.05). At the same time, the cecal Bifidobacterium and Lactobacillus counts were increased (p < 0.05), and Escherichia coli counts were decreased (p < 0.05) after supplemented with Zn-Met. In conclusion, inclusion of 120 mg/kg Zn-Met minimizes the adverse effects of APEC challenge on meat ducks by improving growth performance and enhancing immune function and intestinal health.

4.
Front Vet Sci ; 9: 774160, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35174244

RESUMEN

This study was conducted to investigate the effects of zinc methionine (Zn-Met) on the growth performance, antioxidant capacity and intestinal barrier function of meat ducks. Three hundred and sixty 1-day-old male Cherry Valley ducks were randomly divided into 6 groups with 6 replicates (10 birds each), and fed diets with 0, 30, 60, 90, 120 or 150 mg/kg Zn for 35 d. The results indicated that dietary supplementation with Zn-Met substantially increased the average daily gain (ADG), and reduced the feed to gain ratio (F/G) during 1-35 d (P < 0.05). Dietary Zn-Met markedly increased the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH), and reduced the malondialdehyde (MDA) content in the jejunum (P < 0.05). The mRNA expression levels of critical antioxidant enzymes such as SOD, CAT, and nuclear factor erythroid 2-related factor 2 (Nrf2) were increased by Zn in the jejunum (P < 0.05). Supplementation with 60, 90, 120, and 150 mg/kg of Zn significantly reduced the diamine oxidase (DAO) activity in the serum (P < 0.05). Different levels of Zn can increase the mRNA expression of occluding (OCLN) and zonula occludens-1 (ZO-1) in the jejunum (P < 0.05). Diets supplemented with zinc significantly increased the content of mucin2 (MUC2), secretory immunoglobulin A (sIgA), immunoglobulin A (IgA) and immunoglobulin G (IgG) in the jejunum of meat ducks (P < 0.05). The 16S rRNA sequence analysis indicated that 150 mg/kg of Zn had a higher relative abundance of Verrucomicrobia and Akkermansia in cecal digesta (P < 0.05). In conclusion, Zn-Met improved the growth performance of meat ducks by enhancing intestinal antioxidant capacity and intestinal barrier function. This study provides data support for the application of Zn-Met in meat duck breeding.

5.
Food Funct ; 10(12): 8149-8160, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31696186

RESUMEN

Flaxseed oil (FO), enriched in n-3 polyunsaturated fatty acids (PUFAs), is an important oil source for intestinal development and health. We aimed to study the different effects of FO versus soybean oil (SO) on growth, intestinal health and immune function of neonates with intrauterine growth retardation (IUGR) using a weaned piglet model. Forty pairs of male IUGR and normal birth weight piglets, weaned at 21 ± 1 d, were fed diets containing either 4% FO or SO for 3 weeks consecutively. Growth performance, nutrient digestibility and intestinal function parameters, immunology and microbiota composition were determined. IUGR led to a poor growth rate, nutrient digestibility and abnormal immunology variables, whereas feeding FO diet improved systemic and gut immunity, as indicated by increased plasma concentration of immunoglobulin G and decreased CD3+CD8+ T lymphocytes, and down-regulated intestinal expression of genes (MyD88, NF-κB, TNF-α, IL-10). Although IUGR tended to decrease villous height, feeding FO diet tended to increase the villi-crypt ratio and up-regulated expressions of tight junction genes (Claudin-1 and ZO-1), together with increased mucosa contents of n-3 PUFAs and a lower Σn-6/Σn-3 ratio. Besides, FO diet decreased the abundance of pathogenic bacteria Spirochaetes, and increased phylum Actinobacteria, and genera Blautia and Bifidobacterium in colonic digesta. Our findings indicate that IUGR impairs growth rate, nutrient digestibility, and partly immunology variables, whereas feeding FO-supplemented diet could improve intestinal function and immunity of both IUGR and NBW pigs, associated with the altered gut microbiome and mucosal fatty acid profile.


Asunto(s)
Ácidos Grasos/química , Retardo del Crecimiento Fetal/veterinaria , Microbioma Gastrointestinal/efectos de los fármacos , Aceite de Linaza/administración & dosificación , Enfermedades de los Porcinos/tratamiento farmacológico , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Animales Recién Nacidos/metabolismo , Animales Recién Nacidos/microbiología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Claudina-1/genética , Claudina-1/metabolismo , Suplementos Dietéticos/análisis , Ácidos Grasos/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/microbiología , Retardo del Crecimiento Fetal/fisiopatología , Intestinos/microbiología , Masculino , Porcinos , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA