RESUMEN
A novel methodology based on ultrasonic-assisted sequential extraction, dispersive-SPE purification, and single-injection on liquid chromatography-tandem mass spectrometry (LC-MS/MS) is proposed, for the first time, to simultaneously measure 14 tri-OPEs and 9 di-OPEs in plant tissues. The samples were successively ultrasonicated with a mixture of hexane:dichloromethane (1:1, v/v) and 8% acetic acid in acetonitrile for extracting tri- and di-OPEs purified with graphitized carbon black and quantitated on LC-MS/MS at the same time. The recoveries of targeted tri- and di-OPEs in the matrix spike ranged from 66% to 120% and 71% to 110% respectively. The proposed method was validated by processing eight types of common vegetables including spinach (Spinacia oleracea L.), lettuce (Lactuca sativa), carrot (Daucus carota var. sativa Hoffm.), sweet potato (Solanum tuberosum L.), cucumber (Cucumis sativus L.), tomato (Solanum lycopersicum L.), green beans (Phaseolus vulgaris), and cowpeas (Vigna unguiculata), with the recoveries of surrogates ranging from 84% to 98%.
Asunto(s)
Organofosfatos , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Organofosfatos/análisis , Ésteres/análisis , Ultrasonido , Lactuca , Extracción en Fase Sólida/métodos , Cromatografía Líquida de Alta PresiónRESUMEN
Different scenarios of urban expansion can influence the dynamic characteristics of catchments in terms of phosphorus (P). It is important to identify the changes in P sources that occur during the process of urbanization to develop targeted policies for managing P in catchments. However, there is a knowledge gap in quantifying the variations of potential P sources associated with urbanization. By combining phosphate oxygen isotopes from global catchments with a Bayesian model and the urbanization process, we demonstrate that the characteristics of potential P sources (such as fertilizers, urban wastewater, faeces, and bedrock) change as urban areas expand. Our results indicate that using phosphate oxygen isotopes in conjunction with a Bayesian model provides direct evidence of the proportions of potential P sources. We classify catchment P loadings into three stages based on shifts in potential P sources during urban expansion. During the initial stage of urbanization (urban areas < 1.5 %), urban domestic and industrial wastewater are the main contributors to P loadings in catchments. In the mid-term acceleration stage (1.5 % ≤ urban areas < 3.5 %), efforts to improve wastewater treatment significantly reduce wastewater P input, but the increase in fertilizer P input offsets this reduction in sewage-derived P. In the high-level urbanization stage (urban areas ≥ 3.5 %), the proportions of the four potential P sources tend to stabilize. Remote areas bear the burden of excessive P loadings to meet the growing food demand and improved diets resulting from the increasing urban population. Our findings support the development of strategies for water quality management that better consider the driving forces of urbanization on catchment P loadings.
Asunto(s)
Fosfatos , Fósforo , Fósforo/análisis , Isótopos de Oxígeno/análisis , Monitoreo del Ambiente/métodos , Urbanización , Teorema de Bayes , Aguas ResidualesRESUMEN
Fragrances rac- and l-menthol extracted from peppermint are widely used and considered as emerging contaminants recently, which are persistent in the environment. Menthol has always been considered as a safe chemical for humans, but its potential adverse ecological effects on aquatic organisms and the toxic mechanisms have not yet been fully understood. The present study aims to investigate the physiological response of Microcystis aeruginosa after exposure to the two menthol isomers, and to explore the toxic mechanisms and ecological risks of these two chemicals. Results showed that rac-menthol exhibited a hormesis effect on the cell growth, chlorophyll a and protein contents; while l-menthol showed an inhibition effect. Adenosine triphosphate (ATP) content increased significantly at day 3 and then decreased markedly at day 6 after exposure to the two chemicals. Compared with rac-menthol, l-menthol can cause damage to the antioxidant system and plasmalemma more severely, promote the production and release of microcystins-LR (MC-LR) more dramatically, upregulate the expression of MC-transportation-related gene mcyH, and induce higher apoptosis rates. Overall results revealed that the toxic effects of l-menthol on cyanobacteria were significantly greater than those of rac-menthol. The significant increase in the malondialdehyde (MDA) content and the ultrastructural characteristics of the cells indicated that the plasma membranes were damaged. Thus, further attention should be paid to the scientific use, ecological and environmental risk assessment of chiral menthol. This study will also provide a scientific basis for future water quality criteria establishment on emerging contaminants such as fragrances.
Asunto(s)
Cianobacterias , Microcystis , Humanos , Clorofila A/metabolismo , Mentol/metabolismo , Mentol/farmacología , Cianobacterias/metabolismo , Antioxidantes/metabolismo , Microcistinas/metabolismo , Extractos Vegetales/farmacología , TerpenosRESUMEN
BACKGROUND: Many studies have investigated how nanoplastics (NPs) exposure mediates nerve and intestinal toxicity through a dysregulated brain-gut axis interaction, but there are few studies aimed at alleviating those effects. To determine whether and how vitamin D can impact that toxicity, fish were supplemented with a vitamin D-low diet and vitamin D-high diet. RESULTS: Transmission electron microscopy (TEM) showed that polystyrene nanoplastics (PS-NPs) accumulated in zebrafish brain and intestine, resulting in brain blood-brain barrier basement membrane damage and the vacuolization of intestinal goblet cells and mitochondria. A high concentration of vitamin D reduced the accumulation of PS-NPs in zebrafish brain tissues by 20% and intestinal tissues by 58.8% and 52.2%, respectively, and alleviated the pathological damage induced by PS-NPs. Adequate vitamin D significantly increased the content of serotonin (5-HT) and reduced the anxiety-like behavior of zebrafish caused by PS-NPs exposure. Virus metagenome showed that PS-NPs exposure affected the composition and abundance of zebrafish intestinal viruses. Differentially expressed viruses in the vitamin D-low and vitamin D-high group affected the secretion of brain neurotransmitters in zebrafish. Virus AF191073 was negatively correlated with neurotransmitter 5-HT, whereas KT319643 was positively correlated with malondialdehyde (MDA) content and the expression of cytochrome 1a1 (cyp1a1) and cytochrome 1b1 (cyp1b1) in the intestine. This suggests that AF191073 and KT319643 may be key viruses that mediate the vitamin D reduction in neurotoxicity and immunotoxicity induced by PS-NPs. CONCLUSION: Vitamin D can alleviate neurotoxicity and immunotoxicity induced by PS-NPs exposure by directionally altering the gut virome. These findings highlight the potential of vitamin D to alleviate the brain-gut-virome disorder caused by PS-NPs exposure and suggest potential therapeutic strategies to reduce the risk of NPs toxicity in aquaculture, that is, adding adequate vitamin D to diet. Video Abstract.
Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Poliestirenos/metabolismo , Poliestirenos/toxicidad , Pez Cebra , Vitamina D/metabolismo , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Microplásticos/toxicidad , Microplásticos/metabolismo , Serotonina/metabolismo , Viroma , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Encéfalo , Citocromos/metabolismoRESUMEN
The production scalability and increasing demand for nano-black phosphorus materials (nano-BPs) inevitably lead to their environmental leakage, thereby raising the risk of human exposure through inhalation, ingestion, dermal, and even intravenous pathways. Consequently, a systematic evaluation of their potential impacts on human health is necessary. This Review outlines recent progress in the understanding of various biological responses to nano-BPs. Attention is particularly given to the inconsistent toxicological findings caused by a wide variation of nano-BPs' physicochemical properties, toxicological testing methods, and cell types examined in each study. Additionally, cellular uptake and intracellular trafficking, cell death modes, immunological effects, and other biologically relevant processes are discussed in detail, providing evidence for the potential health implications of nano-BPs. Finally, we address the remaining challenges related to the health risk evaluation of nano-BPs and propose a broader range of applications for these promising nanomaterials.
Asunto(s)
Nanoestructuras , Fósforo , Humanos , Fósforo/química , Nanoestructuras/toxicidad , Transporte BiológicoRESUMEN
Previous studies have demonstrated that e-SOx can regulate the sedimentary release of phosphorus (P) in brackish and marine sediments. When e-SOx is active, an iron (Fe) and manganese (Mn) oxide rich layer is formed near the sediment surface, which prevents P release. When e-SOx becomes inactive, the metal oxide layer is reduced via sulfide-mediated dissolution, and P is subsequently released to the water column. Cable bacteria have been shown to also occur in freshwater sediments. In these sediments, sulfide production is limited, and the metal oxide layer would thus dissolve less efficiently, leaving the P trapped at the sediment surface. This lack of an efficient dissolution mechanism implies that e-SOx could play an important role in the regulation of P availability in eutrophied freshwater streams. To test this hypothesis, we incubated sediments from a eutrophic freshwater river to investigate the impact of cable bacteria on sedimentary cycling of Fe, Mn and P. High-resolution depth profiling of pH, O2 and ΣH2S complemented with FISH analysis and high-throughput gene sequencing showed that the development of e-SOx activity was closely linked to the enrichment of cable bacteria in incubated sediments. Cable bacteria activity caused a strong acidification in the suboxic zone, leading to the dissolution of Fe and Mn minerals and consequently a strong release of dissolved Fe2+ and Mn2+ to the porewater. Oxidation of these mobilized ions at the sediment surface led to the formation of a metal oxide layer that trapped dissolved P, as shown by the enrichment of P-bearing metal oxides in the top layer of the sediment and low phosphate in the pore and overlying water. After e-SOx activity declined, the metal oxide layer did not dissolve and P remained trapped at the surface. Overall, our results suggested cable bacteria can play an important role to counteract eutrophication in freshwater systems.
Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Sedimentos Geológicos/microbiología , Agua Dulce/microbiología , Óxidos , Agua , Oxidación-Reducción , Bacterias , Sulfuros , Contaminantes Químicos del Agua/análisisRESUMEN
With the extensive production and application of black phosphorus (BP) nanosheets, release to the environment is inevitable, which raises concerns about the fate and effects of this two-dimensional (2D) material on sensitive receptors such as environmental microbes. Although the bacterial toxicity of BP nanosheets has been demonstrated, whether the biological response differs in pathogenic and nonpathogenic strains of a microorganism is unknown. Here, enteropathogenic Escherichia coli (EPEC) and nonpathogenic Escherichia coli DH5α (E. coli DH5α), Escherichia coli k12 (E. coli k12), and Bacillus tropicus (B. tropicus) are used to comparatively study the microbial toxicity of BP nanosheets. Upon exposure to BP nanosheets across a range of doses from 10 to 100 µg mL-1 for 12 h, EPEC experienced enhanced growth and E. coli DH5α and E. coli k12 were not affected, whereas B. tropicus exhibited clear toxicity. By combining transcriptome sequencing, proteome analysis, and other sensitive biological techniques, the mechanism of BP-induced growth promotion for EPEC was uncovered. Briefly, BP nanosheets activate the antioxidation system to resist oxidative stress, promote protein synthesis and secretion to attenuate membrane damage, enhance the energy supply, and activate growth-related pathways. None of these impacts were evident with nonpathogenic strains. By describing the mechanism of strain-dependent microbial effects, this study not only highlights the potential risks of BP nanosheets to the environment and to human health but also calls attention to the importance of model strain selection when evaluating the hazard and toxicity of emerging nanomaterials.
Asunto(s)
Escherichia coli Enteropatógena , Proteínas de Escherichia coli , Humanos , Proteínas Portadoras , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Fósforo , NanoestructurasRESUMEN
Increases in nutrient loadings to waterways over the past four decades have led to widespread eutrophication and water quality impairments across China. Understanding the spatial, interannual and long-term variations in nutrient loadings and associated drivers at the national scale is crucial for developing effective nutrient reduction strategies. However, the controls on, and spatiotemporal variations in, nutrient fluxes remain a problem from both an academic and management perspective. This study provides spatially extensive and temporally contiguous estimates of changes in riverine total nitrogen (TN), ammonia nitrogen (NH3-N) and total phosphorus (TP) fluxes for continental area of China based on machine learning stack models and empirical modeling over the period from 1980 to 2018. Results reveal considerable spatial, interannual and long-term variability in annual TN, NH3-N and TP fluxes, with spatial variations in average TN and NH3-N fluxes primarily driven by net anthropogenic nitrogen inputs. Interannual variability is dominated by precipitation across continental areas of China. Spatial variability in the estimated average annual TP flux in the undeveloped western and the developed middle east regions of China are primarily controlled by net anthropogenic phosphorus inputs and precipitation, respectively. We found that TN, NH3-N and TP fluxes increased from 1980 to 2018 in watersheds in East China; the national mean annual TN, NH3-N and TP fluxes increased before 2015 and decreased after 2015. This study illustrates the important role of precipitation and temperature variability in controlling the spatial, interannual and long-term variability of nutrient fluxes, and indicates that the influence of the meteorological conditions on annual loadings is needed when designing watershed nutrient reduction or management strategies.
Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Fósforo/análisis , Nitrógeno/análisis , Calidad del Agua , Eutrofización , Amoníaco , China , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisisRESUMEN
An in-depth understanding of the ecological and health risks posed by heavy metals originating from various pollution sources is critical for foresighted soil-quality management. Based on 220 grid samples (2 × 2 km) analyzed for eight heavy metals (Cd, Hg, As, Pb, Cr, Ni, Cu, and Zn) in the Chenshui (CS) watershed of Hunan Province, China, we applied an integrated approach for identifying and apportioning pollution sources of soil heavy metals and exploring their source-specific pollution risks. This approach consists of three sequential steps: (1) source identification by combining the positive matrix factorization model with geostatistical analysis; (2) quantification of ecological, carcinogenic, and non-carcinogenic risks in a source-specific manner; (3) prioritization of sources in a holistic manner, considering both ecological risks and human health risks. Cd (68.0%) and Hg (13.3%) dominated the ecological risk in terms of ecological risk index; As dominated the non-carcinogenic health risk in terms of total hazard index (THI; adults: 84.8%, children: 84.7%) and the carcinogenic health risk in terms of total carcinogenic risk index (TCRI; adults: 69.0%, children: 68.8%). Among three exposure routes, oral ingestion (89.4-95.2%) was the predominant route for both adults and children. Compared with adults (THI = 0.41, TCRI = 7.01E-05), children (THI = 2.81, TCRI = 1.22E-04) had greater non-carcinogenic and carcinogenic risks. Four sources (F1-4) were identified for the CS watershed: atmospheric deposition related to coal-burning and traffic emissions (F1, 18.0%), natural sources from parent materials (F2, 34.3%), non-ferrous mining and smelting industry (F3, 37.9%), and historical arsenic-related activity (F4, 9.8%). The F3 source contributed the largest (45.2%) to the ecological risks, and the F4 source was the predominant contributor to non-carcinogenic (52.4%) and carcinogenic (64.6%) risks. The results highlight the importance of considering legacy As pollution from abandoned industries when developing risk reduction strategies in this region. The proposed methodology for source and risk identification and apportionment formulates the multidimensional concerns of pollution and the various associated risks into a tangible decision-making process to support soil pollution control.
Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Adulto , Cadmio/análisis , Niño , China , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Humanos , Mercurio/análisis , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisisRESUMEN
Soil lead (Pb) contamination is often caused by anthropogenic activities. In this study, a pot experiment was conducted to assess the effect of biochars derived from pig-carcass (PCBC) and branches of oriental-plane tree (OPBC) on the bioavailability, redistribution, and phytoavailability of Pb and P, as well as the growth of Ipomoea aquatica Forsk in a Pb-contaminated soil. Application of PCBC increased the total and available P concentrations in the soil as compared to the control, and enhanced the concentrations of labile P and sparingly labile P via direct exogenous P input and improvement of soil pH. Both biochars facilitated P accumulation in plant shoots and roots. Sequential extraction of soil Pb confirmed that biochar application facilitated the transformation of mobile Pb into stable fractions, with greater effects from PCBC than OPBC. Hence, biochar application significantly decreased the soil DTPA-extractable Pb by 90.2% (PCBC) and 64.0% (OPBC) compared to the control, consequently reducing Pb uptake by plants. The Pb immobilization by biochar was driven by the biochar-induced increase of soil pH, Pb-phosphate/carbonate precipitation, ion exchange between Pb2+ and biochar-derived cations (e.g., Ca2+ and K+), and surface complexation with functional groups (e.g., carboxyl, hydroxyl, CO). Application of PCBC simultaneously increased the biomass of plant roots and shoots, by 1.8- and 0.6- folds, respectively. Overall, PCBC showed a potential to function as an effective amendment in the immobilization of Pb and alternative P fertilizer to improve degraded soils.
Asunto(s)
Fósforo , Contaminantes del Suelo , Animales , Disponibilidad Biológica , Cadmio/análisis , Carbón Orgánico , Plomo , Suelo , Contaminantes del Suelo/análisis , PorcinosRESUMEN
Host nutrition is an important factor affecting disease progression. Selenium (Se) is an essential trace element for the human body with anti-inflammatory, antioxidant, and immune effects, and Se deficiency increases RNA-virus replication and virulent mutations, which lead to more severe tissue damage and symptoms. Low Se status in the host may be an important cause of health complications induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this article, we describe the metabolic mechanisms by which Se is involved in anti-inflammatory, antioxidant, and immune effects, and review the role and clinical effects of Se in viral infection. We then discuss the potential relationship between Se and coronavirus disease 2019 (COVID-19). The association between soil Se level and the incidence of COVID-19 was observed in different cities of Hubei Province. The incidence of COVID-19 was more than 10 times lower in Se-enriched cities (Enshi, Shiyan, and Xiangyang) than in Se-deficient cities (Suizhou and Xiaogan). Although the relationship between soil Se levels and the incidence of COVID-19 in Hubei still needs further study, these findings provide baseline information demonstrating the effect of Se levels on SARS-CoV-2, which could contribute to the prevention and management of COVID-19.
Asunto(s)
COVID-19 , Selenio , Virosis , Humanos , Estado Nutricional , SARS-CoV-2RESUMEN
The role of plastic as a vector for bioaccumulation of hydrophobic organic pollutants has been widely studied. However, the interactions between microplastics (MPs) and crude oil, and the transfer kinetics of sorbed oil from ingested MPs into aquatic biota are largely unknown. In this study, interactions between MPs and crude oil in seawater and digestive tract mimic of aquatic biota have been examined. To mimic the living, transportation and cooking conditions of aquatic organisms, sorption and desorption behaviors were investigated under room temperature-bath (25 °C), ice-bath (0â¼4 °C) and boiling water-bath (95â¼100 °C), and pH was set as 4 and 7 for the simulated gut fluid. The results showed that sorption capacity of polyethylene (PE) MPs for crude oil in seawater was higher than that in intestinal tract, indicating more oil residue in aqueous phase of gut fluid in the present of organic particles. The sorption kinetics models were well fitted to the pseudo-order model, and isotherms models were well fitted to the Freundlich model. In addition, the results demonstrated that temperature played a significant effect on crude oil viscosity, and the sorption capacity under different temperatures was in the order of 25 °C > 95â¼100 °C > 0â¼4 °C, indicating that more oil was remained in aqueous phase at boiling water-bath and ice-bath. The increment of pH enhances the sorption capacities of PE MPs. Moreover, the desorption experiment has supplemented the current findings from the sorption experiments.
Asunto(s)
Microplásticos/química , Petróleo , Polietileno/química , Contaminantes Químicos del Agua/química , Adsorción , Organismos Acuáticos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Plásticos/química , Agua de Mar/química , Contaminantes Químicos del Agua/análisisRESUMEN
In this study, molecular compositions of cyanobacteria, suspended matter, and surface sediments in the Dianchi Lake, a highly eutrophic lake, were investigated by solution and solid-state 31P nuclear magnetic resonance (NMR) spectroscopy. A solution-state 31P NMR spectral analysis of NaOH-EDTA-extracted samples revealed the presence of orthophosphate (ortho-P, 48.5%-91.2% of the total extracted phosphate), orthophosphate monoester (mono-P, 7.3%-43.9%), orthophosphate diester (diester-P, 0.9%-3.9%), and pyrophosphate (pyro-P, 0.7%-5.5%). The organic phosphorus (Po) distribution in suspended matters and cyanobacteria was relatively similar but different from surface sediments. The inorganic phosphorus (Pi) distribution in suspended matters and surface sediments was slightly similar. Results of the solid-state 31P NMR spectral analysis of non-extractable residue showed that cyanobacteria and suspended matter contain a large proportion of Po and poly-P. For surface sediment, only metal-bonded pyro-P and a high proportion of ortho-P were detected. The solid-state 31P NMR spectra results of extracted residual indicated that several of the pyro-P bound to metals and other Pi or Po compounds associated with mineral phases in suspended matter and surface sediment are non-extractable. This result revealed that a high proportion of biogenic phosphorus is bioavailable. These results verify the process of biogenic poly-P regeneration in the Dianchi Lake given that Po, poly-P, and pyro-P are predominant in cyanobacteria and can be released into lake water through chemical and biological degradation, thus further worsening eutrophication.
Asunto(s)
Monitoreo del Ambiente/métodos , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , China , Eutrofización , Sedimentos Geológicos/química , Lagos/química , Compuestos de Fósforo/análisisRESUMEN
Total (all forms of inorganic and organic) concentrations of mercury (Hg) and selenium (Se) were measured in dorsal muscle and eggs of wild fishes from two shallow lakes in China: Tai Lake (Ch: Taihu; TL) and Baiyangdian Lake (BYDL). Hazard quotients (HQs) were calculated by dividing concentrations of Se or Hg in muscle or eggs of fishes by threshold concentrations for effects expressed as tissue residue toxicity reference values (TR-TRVs). Concentrations of Hg in whole bodies of fishes were estimated by concentrations in muscle. Based on concentrations of Hg in whole body, HQs for fishes in TL and BYDL were less than 1.0, which suggests little to moderate potential for effects on these fishes and unaccepted adverse effects of Hg are unexpected for adult fishes. HQs of Se in muscle of common carp from TL were closed to 1.0, and 27% of HQs based on concentrations of Hg in eggs of fishes from BYDL exceeded 1.0. Potential hazard due to Hg on common carp in TL and reproductive effects of Se on fishes from BYDL exhibited need for concern. Ratios of molar concentrations of Se to Hg were greater than 1.0. Thus, there might be some protective effects of Se on effects of Hg on fishes in TL and BYDL.
Asunto(s)
Ecotoxicología/métodos , Peces , Mercurio/toxicidad , Selenio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Carpas , China , Monitoreo del Ambiente , Lagos , Mercurio/análisis , Músculos/química , Especificidad de Órganos , Óvulo/química , Selenio/análisis , Contaminantes Químicos del Agua/análisisRESUMEN
Tai Lake (Ch: Taihu) has attracted international attention forcyanobacteria blooms. However, the drivers of cultural eutrophication, especially long-term socio-economic indicators have been little researched. The results of research demonstrate how socio-economic development affected quality of water and how it has been improved by anthropogenic activities. This study described variability in indicators of water quality in Tai Lakeand investigated thedrivers. Significant relationships existed between concentrations of annual mean total nitrogen (TN), total phosphorous (TP), chemical oxygen demand (COD) and biological oxygen demand (BOD), and population, per capital gross domestic production (GDP) and sewage discharge (pâ¯<â¯0.05). However, mechanisms causing change varied among TN, TP, COD and BOD. Before 2000, the main contributors to increases in concentrations of TN were human population, GDP and volumes of domestic sewage discharges. After 2000, discharges of industrial sewage become the primary contributor. After 1998, the regressions of annual mean TN, TP and COD on per capital GDP, population and domestic sewage discharge were reversed compared to the former period. Since 1999, an apparent inverted U-shaped relationship between environmental pollution and economic development has developed, which indicated that actions taken by governments have markedly improved quality of water in Tai Lake. The statistical relationship between BOD and per capital GDP didn't conform to the Kuznet curve. The U-shaped Kuznet curve may offer hope for the future that with significant environmental investments a high GDP can be reached and maintained without degradation of the environment, especially through appropriate management of industrial sewage discharge.
Asunto(s)
Monitoreo del Ambiente , Producto Interno Bruto/tendencias , Lagos/química , Agua/química , Análisis de la Demanda Biológica de Oxígeno , Nitrógeno/análisis , Fósforo/análisisRESUMEN
Bioavailability and preservation of organic P (Po) in the sediment profiles (DC-1 and DC-2) from Lake Dianchi, a eutrophic lake in China, were investigated by a combination of enzymatic hydrolysis and solution 31P nuclear magnetic resonance (NMR) spectroscopy. Results showed that large of Po could be extracted by NaOH-EDTA (NaOH-EDTA Po), with little Po in residues after extraction with NaOH-EDTA. Bioavailability and preservation of NaOH-EDTA Po provide key information for biogeochemical cycling of Po in sediments. The details of P species and their bioavailability in NaOH-EDTA Po showed that 54.8-70.4% in DC-1 and 54.6-100% in DC-2, measured by 31P NMR, could be hydrolyzed by the phosphatase. Whereas, some proportion of NaOH-EDTA Po could not be hydrolyzed by the phosphatase, and decreased with sediment depth. Interaction between Po and other organic matter (e.g., humic acids) is likely an important factor for preservation of these Po in the sediment profiles. Simulation experiments of hydrolysis of model Po compounds adsorbed by minerals, such as goethite and montmorillonite, further indicated that adsorption to minerals protected some Po, especially phytate-like P, from enzymatic hydrolysis, thus preserving these forms of Po in sediments. Interactions of Po with organic matter and minerals in the sediments are two important factors determining biogeochemical cycling of Po in lakes. Intervention to break the cycle of FeP and bioavailable Po (e.g., labile monoester P) in the history of eutrophication is important way to control algal blooming.
Asunto(s)
Sedimentos Geológicos/química , Lagos/química , Espectroscopía de Resonancia Magnética/métodos , Fósforo/química , Contaminantes Químicos del Agua/química , Disponibilidad Biológica , Hidrólisis , Contaminantes Químicos del Agua/análisisRESUMEN
Nutrient criteria provide a scientific foundation for the comprehensive evaluation, prevention, control and management of water eutrophication. In this review, the literature was examined to systematically evaluate the benefits, drawbacks, and applications of statistical analysis, paleolimnological reconstruction, stressor-response model, and model inference approaches for nutrient criteria determination. The developments and challenges in the determination of nutrient criteria in lakes and reservoirs are presented. Reference lakes can reflect the original states of lakes, but reference sites are often unavailable. Using the paleolimnological reconstruction method, it is often difficult to reconstruct the historical nutrient conditions of shallow lakes in which the sediments are easily disturbed. The model inference approach requires sufficient data to identify the appropriate equations and characterize a waterbody or group of waterbodies, thereby increasing the difficulty of establishing nutrient criteria. The stressor-response model is a potential development direction for nutrient criteria determination, and the mechanisms of stressor-response models should be studied further. Based on studies of the relationships among water ecological criteria, eutrophication, nutrient criteria and plankton, methods for determining nutrient criteria should be closely integrated with water management requirements.
Asunto(s)
Monitoreo del Ambiente/métodos , Lagos/química , Nitrógeno/análisis , Fósforo/análisis , Ecosistema , Monitoreo del Ambiente/normas , Eutrofización , Contaminación del Agua/estadística & datos numéricosRESUMEN
Bioavailability of phosphorus (P) in biomass of aquatic macrophytes and phytoplankton and its possible relationship with eutrophication were explored by evaluation of forms and quantities of P in aqueous extracts of dried macrophytes. Specifically, effects of hydrolysis of organically-bound P by the enzyme alkaline phosphatase were studied by use of solution 31P-nuclear magnetic resonance (NMR) spectroscopy. Laboratory suspensions and incubations with enzymes were used to simulate natural releases of P from plant debris. Three aquatic macrophytes and three phytoplankters were collected from Tai Lake, China, for use in this simulation study. The trend of hydrolysis of organic P (Po) by alkaline phosphatase was similar for aquatic macrophytes and phytoplankton. Most monoester P (15.3% of total dissolved P) and pyrophosphate (1.8%) and polyphosphate (0.4%) and DNA (3.2%) were transformed into orthophosphate (14.3%). The major forms of monoester P were glycerophosphate (8.8%), nucleotide (2.5%), phytate (0.4%) and other monoesters P (3.6%). Proportions of Po including condensed P hydrolyzed in phytoplankton and aquatic macrophytes were different, with the percentage of 22.6% and 6.0%, respectively. Proportion of Po hydrolyzed in debris from phytoplankton was approximately four times greater than that of Po from aquatic macrophytes, and could be approximately twenty-five times greater than that of Po in sediments. Thus, release and hydrolysis of Po, derived from phytoplankton debris would be an important and fast way to provide bioavailable P to support cyanobacterial blooming in eutrophic lakes.
Asunto(s)
Fosfatasa Alcalina/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , China , Eutrofización , Lagos/química , Fitoplancton/química , Plantas/químicaRESUMEN
Long-term (2000 to 2012) monthly data on communities of phytoplankton, and environmental variables were measured in water collected from Meiliang Bay and Wuli Lake of Tai Lake, China. Redundancy analysis (RDA) was conducted to explore relationships between the phytoplankton communities and environmental variables. Change points for concentrations of nutrients, which serve as early warnings of state shifts in lacustrine ecosystems, were identified using the Threshold Indicator Taxa Analysis (TITAN). The biomass of phytoplankton was positively correlated with the concentrations of total phosphorus (TP), suspended solids (SS), water temperature (WT), and pH but negatively correlated with the N/P ratio (by mass) and Secchi disk depth (SD). Furthermore, TP, rather than other factors, was a controlling factor limiting the primary production of phytoplankton in most of this region. The change points for concentrations of TP controlling the occurrences of sensitive and tolerant taxa were 56.1 and 103.5 µg TP/L, respectively. These results imply that an abrupt change in this lacustrine ecosystem has occurred in most parts of the study area, and the turbid state of this lake can be altered by reducing TP loading. This study provides an alternative ecological method for exploring the production of algal blooms and could advance the understanding of HABs.
Asunto(s)
Monitoreo del Ambiente , Lagos/química , Fitoplancton/fisiología , Biomasa , China , Ecología , Ecosistema , Eutrofización , Nitrógeno/análisis , Fósforo/análisis , Temperatura , Contaminantes Químicos del Agua/análisisRESUMEN
As a primary factor responsible for lake eutrophication, a deeper understanding of the phosphorus (P) composition and its turnover in sediment is urgently needed. In this study, P species in surface sediments from a Chinese large eutrophic lake (Lake Taihu) were characterized by traditional fractionation and 31P nuclear magnetic resonance (NMR) spectroscopy, and their contributions to the overlying water were also discussed. Fractionation results show that NaOH-P predominated in the algal-dominated zone, accounting for 60.1% to total P in Zhushan Bay. Whereas, refractory fractions including HCl-P and residual-P were the main P burial phases in the macrophyte-dominated zone, the center and lakeshore. Recovery rates of the total P and organic P were greatly improved by using a modified single-step extraction of NaOH-EDTA, ranging from 22.6 to 66.1% and from 15.0 to 54.0%. Ortho-P, monoester-P, and pyro-P are identified as the major P components in the NaOH-EDTA extracts by 31P NMR analysis. Trace amount of DNA-P appeared only in sediments from algal- and macrophyte-dominated zones, ascribing to its biological origin. The relative content of ortho-P is the highest in the algal-dominated zone, while the biogenic P including ester-P and pyro-P is the highest in the macrophyte-dominated zone. Moreover, ortho-P and pyro-P correlated positively with TP and chlorophyll a in the overlying water, whereas only significant relationships were found between monoester-P, biogenic P, and chlorophyll a. These discrepancies imply that inorganic P, mainly ortho-P, plays a vital role in sustaining the trophic level of water body and algal bloom, while biogenic P makes a minor contribution to phytoplankton growth. This conclusion was supported by the results of high proportion of biogenic P in algae, aquatic macrophytes, and suspended particulate from the published literature. This study has significant implication for better understanding of the biogeochemical cycling of endogenous P and its role in affecting lake eutrophication.