Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Physiol Mol Biol Plants ; 30(3): 383-399, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38633273

RESUMEN

Acanthopanax gracilistylus is a deciduous plant in the family Araliaceae, which is commonly used in Chinese herbal medicine, as the root bark has functions of nourishing the liver and kidneys, removing dampness and expelling wind, and strengthening the bones and tendons. Kaurenoic acid (KA) is the main effective substance in the root bark of A. gracilistylus with strong anti-inflammatory effects. To elucidate the KA biosynthesis pathway, second-generation (DNA nanoball) and third-generation (Pacific Biosciences) sequencing were performed to analyze the transcriptomes of the A. gracilistylus leaves, roots, and stems. Among the total 505,880 isoforms, 408,954 were annotated by seven major databases. Sixty isoforms with complete open reading frames encoding 11 key enzymes involved in the KA biosynthesis pathway were identified. Correlation analysis between isoform expression and KA content identified a total of eight key genes. Six key enzyme genes involved in KA biosynthesis were validated by real-time quantitative polymerase chain reaction. Based on the sequence analysis, the spatial structure of ent-kaurene oxidase was modeled, which plays roles in the three continuous oxidations steps of KA biosynthesis. This study greatly enriches the transcriptome data of A. gracilistylus and facilitates further analysis of the function and regulation mechanism of key enzymes in the KA biosynthesis pathway. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01436-7.

2.
Front Immunol ; 15: 1369110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455058

RESUMEN

Hepatocellular carcinoma (HCC) is a prevalent malignancy, often associated with compromised immune function in affected patients. This can be attributed to the secretion of specific factors by liver cancer cells, which hinder the immune response and lead to a state of immune suppression. Polysaccharides derived from traditional Chinese medicine (TCM) are valuable constituents known for their immunomodulatory properties. This review aims to look into the immunomodulatory effects of TCM polysaccharides on HCC. The immunomodulatory effects of TCM polysaccharides are primarily manifested through the activation of effector T lymphocytes, dendritic cells, NK cells, and macrophages against hepatocellular carcinoma (HCC) both in vivo and in vitro settings. Furthermore, TCM polysaccharides have demonstrated remarkable adjuvant antitumor immunomodulatory effects on HCC in clinical settings. Therefore, the utilization of TCM polysaccharides holds promising potential for the development of novel therapeutic agents or adjuvants with advantageous immunomodulatory properties for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Medicina Tradicional China , Adyuvantes Inmunológicos/uso terapéutico , Polisacáridos/farmacología , Polisacáridos/uso terapéutico
3.
Ann Transl Med ; 11(11): 382, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37970593

RESUMEN

Background: Radix Salviae (Danshen)-Angelicae Sinensis Radix (Danggui)-Lycii Fructus (Gouqizi)-Rehmanniae Radix Praeparata (Shudihuang)-Ginkgo Folium (Yinxinye) (RALRG) are commonly used herbs in China that have shown positive effects on retinitis pigmentosa (RP). However, little research has been performed on the impact of RALRG and RP. Herein, this study aimed to predict the mechanism and potential components of RALRG in treating RP. Methods: The ingredients of RALRG were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP); the potential targets of RP and RALRG were obtained from TCMSP, GeneCards, and the Online Mendelian Inheritance in Man (OMIM) database. A protein-protein interaction (PPI) network was constructed to visualize PPIs. The functional enrichment was performed with the R program. A visual RALRG-RP-pathway pharmacology network was established by Cytoscape 3.9.1. Molecular docking was used to perform molecular docking and calculate the binding affinity. Results: A total of 132 effective active ingredients in RALRG with 248 target genes were screened; 92 intersection target genes were acquired from the intersection of RP- and RALRG-related genes. Gene Ontology (GO) enrichment indicated that these intersection targets were mainly involved in oxidative stress, metal ion response, and chemical stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the PI3K-AKT, cellular senescence, and MAPK signaling pathways were closely related to the therapy of RP. In addition, a potential pharmacology network for RALRG-RP-pathway was constructed. AKT1 and JUN were considered the primary targets. Luteolin, quercetin, and kaempferol were identified as the vital three active ingredients. Conclusions: RALRG was found to be the main regulator for oxidative stress and PI3K/AKT signaling pathways. Luteolin, quercetin, and kaempferol were three promising complementary ingredients for RP treatment. This study may provide a theoretical basis for applying RALRG to screen potential drugs for RP.

4.
Physiol Plant ; 175(5): e14010, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882262

RESUMEN

Fruits and leaves of Solanum khasianum C. B. Clarke have long been used as a common Chinese herbal medicine. Steroidal glycoalkaloids (SGAs), the main active ingredient in S. khasianum, exhibit various pharmacological effects. However, genes involved in the SGA biosynthetic pathway in S. khasianum have not yet been identified. Genes encoding potential key SGA biosynthesis enzymes were identified through comprehensive RNA sequencing analysis (RNA-seq) of S. khasianum leaves, stems, and fruits. A total of 123,704 unigenes were obtained, of which 109,775 (88.74%) were annotated in seven public databases. Among these, 54 unigenes potentially involved in SGA biosynthesis were identified. Additionally, 23,636 differentially expressed genes were identified by comparing gene expression levels among the fruits, stems, and leaves of S. khasianum. The structural characteristics and phylogenetic relationship of cycloartenol synthase involved in SGA biosynthesis were further analyzed. Solasodine constituent was detected by high-performance liquid chromatography. This is the first study to report the comparative transcriptome analysis of different tissues of S. khasianum that identifies valuable genes potentially involved in SGA biosynthesis in this species.


Asunto(s)
Solanum , Solanum/genética , Filogenia , Perfilación de la Expresión Génica , Transcriptoma/genética , RNA-Seq
5.
BMC Plant Biol ; 23(1): 297, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268959

RESUMEN

BACKGROUND: Iva xanthiifolia, native to North America, is now widely distributed in northeastern China and has become a vicious invasive plant. This article aims to probe the role of leaf extract in the invasion of I. xanthiifolia. METHODS: We collected the rhizosphere soil of Amaranthus tricolor and Setaria viridis in the invasive zone, the noninvasive zone and the noninvasive zone treated with extract from I. xanthiifolia leaf, and obtained I. xanthiifolia rhizosphere soil in the invasive zone. All wild plants were identified by Xu Yongqing. I. xanthiifolia (collection number: RQSB04100), A. tricolor (collection number: 831,030) and S. viridis (collection number: CF-0002-034) are all included in Chinese Virtual Herbarium ( https://www.cvh.ac.cn/index.php ). The soil bacterial diversity was analyzed based on the Illumina HiSeq sequencing platform. Subsequently, taxonomic analysis and Faprotax functional prediction were performed. RESULTS: The results showed that the leaf extract significantly reduced the diversity of indigenous plant rhizosphere bacteria. A. tricolor and S. viridis rhizobacterial phylum and genus abundances were significantly reduced under the influence of I. xanthiifolia or its leaf extract. The results of functional prediction showed that bacterial abundance changes induced by leaf extracts could potentially hinder nutrient cycling in native plants and increased bacterial abundance in the A. tricolor rhizosphere related to aromatic compound degradation. In addition, the greatest number of sensitive Operational Taxonomic Units (OTUs) appeared in the rhizosphere when S. viridis was in response to the invasion of I. xanthiifolia. It can be seen that A. tricolor and S. viridis have different mechanisms in response to the invasion of I. xanthiifolia. CONCLUSION: I. xanthiifolia leaves material has potential role in invasion by altering indigenous plant rhizosphere bacteria.


Asunto(s)
Bacterias , Rizosfera , China , Suelo , Extractos Vegetales , Microbiología del Suelo , Raíces de Plantas/microbiología
6.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3765-3772, 2022 Jul.
Artículo en Chino | MEDLINE | ID: mdl-35850833

RESUMEN

Lignan is the main medicinal component of Eucommia ulmoides, and lignin is involved in the defense of plants against diseases and insect pests.They are synthesized from coniferyl alcohol with the help of dirigent(DIR) and peroxidase(POD), respectively.In this study, transcriptome assembly of stems and leaves of E.ulmoides was performed, yielding 112 578 unigenes.Among them, 70 459 were annotated in seven databases.A total of 59 unigenes encodes 11 key enzymes in the biosynthesis pathways of lignin and lignin, of which 11 encode POD and 8 encode DIR.A total of 13 unigenes encoding transcription factors are involved in phenylpropanoid metabolism. Compared with leaves of E.ulmoides, 7 575 unigenes were more highly expressed in stems, of which 462 were involved in phenylpropanoid biosynthesis.Our results extend the public transcriptome dataset of E.ulmoides, which provide valuable information for the analysis of biosynthesis pathways of lignan and lignin in E.ulmoides and lay a foundation for further study on the functions and regulation mechanism of key enzymes in lignan and lignin biosynthesis pathways.


Asunto(s)
Eucommiaceae , Lignanos , Vías Biosintéticas , Eucommiaceae/genética , Lignanos/metabolismo , Lignina/metabolismo , Transcriptoma
7.
Food Res Int ; 157: 111375, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35761630

RESUMEN

Camellia sinensis (L.) O. Kuntze is used to produce tea, a beverage consumed worldwide. Catechins are major medically active components of C. sinensis and can be used clinically to treat hyperglycaemia, hypertension, and cancer. In this study, we aimed to identify the genes involved in catechins biosynthesis. To this end, we analysed transcriptome data from two different cultivars of C. sinensis using DNBSEQ technology. In total,47,717 unigenes were obtained from two cultivars of C. sinensis, of which 9429 were predicted as new unigenes. In our analyses of the Kyoto Encyclopedia of Genes and Genomes database, 212 unigenes encoding 13 key enzymes involved in catechins biosynthesis were identified; the structures of leucoanthocyanidin reductase and anthocyanidin reductase were spatially modelled. Some of these key enzymes were verified by real-time quantitative polymerase chain reaction, and multiple genes encoding plant resistance proteins or transcription factors were identified and analysed. Furthermore, two microRNAs involved in the regulation of catechins biosynthesis were explored. Differentially expressed genes involved in the flavonoid biosynthesis pathway were identified from pairwise comparisons of genes from different cultivars of tea plants. Overall, our findings expanded the number of publicly available transcript datasets for this valuable plant species and identified candidate genes related to the biosynthesis of C. sinensis catechins, thereby establishing a foundation for further in-depth studies of catechins biosynthesis in varieties or cultivars of C. sinensis.


Asunto(s)
Camellia sinensis , Catequina , Camellia sinensis/química , Catequina/metabolismo , Oxidorreductasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Té/genética , Té/metabolismo , Transcriptoma
8.
Gene ; 833: 146579, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35598678

RESUMEN

Boehmeria nivea (L.) Gaudich is used in traditional Chinese medicine. Chlorogenic acids are major medically active components of Boehmeria nivea, which can be used clinically to treat hyperglycemia, pneumonia, and cancer. To identify the genes involved in chlorogenic acid biosynthesis, we analyzed transcriptome data from leaf, root, and stem tissues of Boehmeria nivea using the Illumina Hi-Seq 4000 platform. A total of 146,790 unigenes were obtained from Boehmeria nivea, of which 106,786 were annotated in public databases. In analyses of the KEGG (Kyoto Encyclopedia of Genes and Genome) database, 484 unigenes that encode the five key enzymes involved in chlorogenic acid biosynthesis were identified, and shikimate O-hydroxycinnamoyl transferase was spatially simulated. Some of these key enzyme unigenes expression levels were verified by RT-qPCR (real-time quantitative Polymerase Chain Reaction). Furthermore, multiple genes encoding plant resistance proteins or transcription factors were identified and analyzed. Differentially expressed genes were identified by performing pairwise comparison of genes between tissues. This study increases the number of public transcript datasets of this species and identifies candidate genes related to the biosynthesis of chlorogenic acid, laying a foundation for the further exploration of this pathway in Boehmeria nivea.


Asunto(s)
Boehmeria , Boehmeria/genética , Ácido Clorogénico , Perfilación de la Expresión Génica , Hojas de la Planta/genética , Proteínas de Plantas/genética , Transcriptoma
9.
Artículo en Inglés | MEDLINE | ID: mdl-35055719

RESUMEN

Senna obtusifolia is a famous medicinal plant that is widely used in Asian countries. Its seed plays an important role in the treatment of many diseases because it contains various anthraquinones and flavonoids. Our previous studies have indicated that three space environment-induced S. obtusifolia lines (SP-lines) i.e., QC10, QC29, and QC46, have higher seed yield and aurantio-obtusin (AO) content. However, the underlying mechanism of higher AO content in SP-lines is still unknown. Herein, transcriptome sequencing and HPLC were employed to analyze the differences between SP-lines and ground control (GC3) and elucidate the regulatory mechanisms of AO accumulation in SP-lines. The results show that 4002 differentially expressed genes (DEGs) were identified in SP-lines versus (vs.) GC3. DEGs in the QC10 vs. GC3, QC29 vs. GC3, and QC46 vs. GC3 comparisons were classified into 28, 36, and 81 GO terms and involved in 63, 74, and 107 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene expression analysis revealed that DEGs involved in anthraquinone pathways were significantly elevated in QC10 and QC46. Integrating the results of GO annotation, KEGG enrichment, and gene expression analysis, we propose that the elevated genes such as DAHPS, DHQS, and MenB enhance the metabolic flux in the anthraquinone pathway and promote AO content in QC10 and QC46. Taken together, this study elucidated the mechanism of AO content in SP-lines and provides valuable genetic information for S. obtusifolia. In addition, to the best of our knowledge, this study presents the first transcriptome analysis of environment-induced medicinal plants and paves the way to select elite S. obtusifolia varieties in the future.


Asunto(s)
Cassia , Antraquinonas , Cromatografía Líquida de Alta Presión , Perfilación de la Expresión Génica , Transcriptoma
10.
BMC Urol ; 21(1): 176, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34920713

RESUMEN

BACKGROUND: Radical prostatectomy (RP) is the primary treatment of localized prostate cancer. Immediate urinary incontinence post-RP was still common and depressing without specific reason. METHODS: A multicenter cohort of 154 consecutive patients from 2018 to 2020, who was diagnosed with localized prostate cancer underwent either modified mini-incision retropubic radical prostatectomy (Mmi-RRP) or laparoscopic radical prostatectomy (LRP) or robotic-assisted radical prostatectomy (RARP). Seventy-two patients with Denonvilliers' fascia (DF) spared were included in DFS (Denonvilliers' fascia sparing) group. Whereas eighty-two patients with DF completely or partially dissected were set as Group Control. The primary outcome was immediate continence (ImC). Continuous data and categorical data were analyzed with t-test and Chi-square test, respectively. Odds ratios (ORs) were calculated with logistic regression. RESULTS: Urinary continence of Group DFS was significantly better than that of Group Control at each time point within one year after operation. Incidence rate of continence in Group DFS and Group Control were 83.3% vs 13.4% (P < 0.01) for ImC, 90.3% vs 30.5% (P < 0.01) at 3 months, 91.7% vs 64.6% (P < 0.01) at 6 months, and 93.1% vs 80.5% (P = 0.02) at 1 year after operation, respectively. Positive surgical margin (PSM) showed no significant difference (20.8% vs 20.7%, P = 1.0). In multivariate analysis, DFS showed importance for ImC post RP (OR = 26.4, P < 0.01). CONCLUSIONS: Denonvilliers' fascia acted as the fulcrum and hammock for continence post RP. Preservation of DF contributed to better continence after RP without increase of PSM. Trail registration Our research was conducted retrospectively and approved by the ethical committees of Minhang Hospital, but not registered.


Asunto(s)
Fascia , Prostatectomía/métodos , Neoplasias de la Próstata/cirugía , Incontinencia Urinaria/prevención & control , Anciano , Anciano de 80 o más Años , Estudios de Seguimiento , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Próstata/patología , Próstata/cirugía , Prostatectomía/efectos adversos , Estudios Retrospectivos , Resección Transuretral de la Próstata , Incontinencia Urinaria/etiología
11.
J Environ Manage ; 295: 113081, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34171783

RESUMEN

Cadmium (Cd) pollution in arable land is of great concern as it impairs plant growth and further threats human health via food-chain. Exogenous supplementation of nutrients is an environmentally-friendly, cost-effective, convenient and feasible strategy for regulating Cd uptake, transport and accumulation in plants. To sustain Cd-contaminated soils management, on the one hand, a low level of the Cd-contaminated soil is expected to cultivate crops with decreased Cd accumulation as affected by exogenous nutrients application, on another hand, a high level of the Cd-contaminated soil is suggested to cultivate phytoextraction plants with increased Cd accumulation as affected by exogenous nutrients application. Nevertheless, effects of nutrients on Cd accumulation in plants are still ambiguous. Thus, data of Cd accumulation in shoots of plants as affected by exogenous application of nutrients were collected from previously published articles between 2005 and 2021 in the present study. According to the data, exogenous supply of calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn) and silicon (Si) to a larger extent decrease Cd amounts in shoots of plants. By contrast, exogenous nitrogen (N), and deficient Ca, Mg and Fe supply have a great possibility to increase Cd amounts in shoots of plants. Although exogenous application of phosphorus (P), sulfur (S), potassium (K), zinc (Zn) and selenium (Se) have a great opportunity to increase biomass, they show different effects on Cd concentrations. As a result, the odds are even for increasing and decreasing Cd amounts in shoots of plants. Taken together, exogenous application of Ca, Mg, Fe, Mn and Si might decrease Cd accumulation in plants that are recommended for crops production. Exogenous N and deficient Ca, Mg and Fe supply might increase Cd accumulation in plants that are recommended for phytoextraction plants. Exogenous application of P, S, K, Zn and Se have half a chance to increase or decrease Cd accumulation in plants. Therefore, dosages, forms and species should be taken into account when exogenous P, S, K, Zn and Se are added.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/análisis , Contaminación Ambiental , Humanos , Nutrientes , Raíces de Plantas/química , Suelo , Contaminantes del Suelo/análisis
12.
Zhongguo Zhong Yao Za Zhi ; 45(12): 2847-2857, 2020 Jun.
Artículo en Chino | MEDLINE | ID: mdl-32627459

RESUMEN

Steroidal saponins, which are the characteristic and main active constituents of Polygonatum, exhibit a broad range of pharmacological functions, such as regulating blood sugar, preventing cardiovascular and cerebrovascular diseases and anti-tumor. In this study, we performed RNA sequencing(RNA-Seq) analysis for the flowers, leaves, roots, and rhizomes of Polygonatum cyrtonema using the BGISEQ-500 platform to understand the biosynthesis pathway of steroidal saponins and study their key enzyme genes. The assembly of transcripts for four tissues generated 129 989 unigenes, of which 88 958 were mapped to several public databases for functional annotation, 22 813 unigenes were assigned to 53 subcategories and 64 877 unigenes were annotated to 136 pathways in KEGG database. Furthermore, 502 unigenes involved in the biosynthesis pathway of steroidal saponins were identified, of which 97 unigenes encoding 12 key enzymes. Cycloartenol synthase, the first key enzyme in the pathway of phytosterol biosynthesis, showed conserved catalytic domain and substrate binding domain based on sequence analysis and homology modeling. Differentially expressed genes(DEGs) were identified in rhizomes as compared to other tissues(flowers, leaves or roots).The 2 437 unigenes annotated by KEGG showed rhizome-specific expression, of which 35 unigenes involved in the biosynthesis of steroidal saponins. Our results greatly extend the public transcriptome dataset of Polygonatum and provide valuable information for the identification of candidate genes involved in the biosynthesis of steroidal saponins and other important secondary metabolites.


Asunto(s)
Polygonatum , Saponinas , Vías Biosintéticas , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Transcriptoma
13.
Phytomedicine ; 76: 153259, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32534358

RESUMEN

BACKGROUND: Compound Kushen Injection (CKI), a well-known Chinese Medicine preparation, has been used to treat non-small cell lung cancer (NSCLC) for more than 15 years, and its clinical curative effect is considered to be beneficial. HYPOTHESIS/PURPOSE: This study was designed to evaluate the effects and underlying mechanisms of CKI against NSCLC using an ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based plasma metabolomics approach. METHODS: 4',6-diamidino-2-phenylindole (DAPI) staining and 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) dye reduction assay were employed to assess apoptosis and the viability of A549 cells with and without CKI treatment. The weight/volume of Lewis lung carcinoma (LLC) sarcomas and histopathological examinations were used to evaluate the anti-tumor effects of CKI against NSCLC. A UPLC-Q-TOF/MS method combined with multivariate data analysis was developed to characterize metabolomic fingerprinting and to screen functional biomarkers that are linked to the CKI treatment of LLC mice, and then metabolic pathway analysis was used to investigate the therapeutic mechanism of CKI. RESULTS: DAPI staining and MTT dye reduction assays indicated that CKI-induced apoptosis and inhibited the proliferation of A549 cells, respectively, in a concentration-dependent manner. The sarcoma volumes and weights in LLC tumor-bearing mice in CKI-dosed groups were significantly lower than those in a model group, which was treated with physiological saline. Histopathological analysis of sections of sarcomas and left pulmonary lobes indicated that CKI exerts an ameliorative effect against LLC. Fourteen functional biomarkers that are related to the therapeutic effects of CKI on LLC were screened and identified using a metabolomics study. Analysis of metabolic pathways revealed that the therapeutic effects of CKI on LLC mainly involved glycerophospholipid metabolism, amino acid metabolism and sphingolipid metabolism. As glycerophospholipid metabolism is a crucial feature of cancer-specific metabolism, the enzymes that are involved in 1-acyl-sn-glycero-3-phosphoinositol biosynthesis were further evaluated. Western blotting results indicated that CKI modulated the abnormal biosynthesis pathway of 1-acyl-sn-glycero-3-phosphoinositol by activation of cytidine diphosphate-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) and cytosolic phospholipase A2 (cPLA2), and by inhibition of lysophosphatidic acid acyltransferase gamma (AGPAT3). CONCLUSION: This study demonstrated that CKI has a favorable anti-tumor effect and that a UPLC-Q-TOF/MS-based metabolomics method in conjunction with further verifications at the biochemical level is a promising approach for investigating its underlying mechanisms.

14.
Zhongguo Zhong Yao Za Zhi ; 44(22): 4820-4829, 2019 Nov.
Artículo en Chino | MEDLINE | ID: mdl-31872588

RESUMEN

Agkistrodon acutus is a traditional Chinese herb medicine which has immunological regulation,anti-tumor,anti-inflammatory and analgesic effects,which is mainly used for the treatment of rheumatoid arthritis,ankylosing spondylitis,sjogren's syndrome and tumors. In order to excavate more important functional genes from A. acutus,the transcriptome of the venom gland was sequenced by the Illumina Hi Seq 4000,and 32 862 unigenes were assembled. Among them,26 589 unigenes were mapped to least one public database. 2 695 unigenes were annotated and assigned to 62 TF families,and 5 920 SSR loci were identified. The majority of mapped unigenes was from Protobothrops mucrosquamatus in the NR database,which revealed their closest homology. Three secretory phospholipase A_2 with different amino acid sequences showed similar spatial structures and all had well-conserved active sites. The 3 D structural models of C-type lectin showed conserved glycosylation binding sites( Asn45). This study will lay the foundation for the further study of the function of snake venom protein,and promoting the development and utilization of genome resources from A. acutus.


Asunto(s)
Agkistrodon/genética , Venenos de Crotálidos , Venenos de Serpiente/genética , Animales , Perfilación de la Expresión Génica , Serpientes , Transcriptoma
15.
Zhongguo Zhong Yao Za Zhi ; 44(9): 1799-1807, 2019 May.
Artículo en Chino | MEDLINE | ID: mdl-31342705

RESUMEN

Chalcone synthase( CHS) and chalcone isomerase( CHI) are key enzymes in the biosynthesis pathway of flavonoids. In this study,unigenes for CHS and CHI were screened from the transcriptome database of Arisaema heterophyllum. The open reading frame( ORFs) of chalcone synthase( Ah CHS) and chalcone isomerase( Ah CHI) were cloned from the plant by RT-PCR. The physicochemical properties,expression and structure characteristics of the encoded proteins Ah CHS and Ah CHI were analyzed. The ORFs of Ah CHS and Ah CHI were 1 176,630 bp in length and encoded 392,209 amino acids,respectively. Ah CHS functioned as a symmetric homodimer. The N-terminal helix of one monomer entwined with the corresponding helix of another monomer. Each CHS monomer consisted of two structural domains. In particular,four conserved residues define the active site. The tertiary structure of Ah CHI revealed a novel open-faced ß-sandwich fold. A large ß-sheet( ß4-ß11) and a layer of α-helices( α1-α7) comprised the core structure. The residues spanning ß4,ß5,α4,and α6 in the three-dimensional structure were conserved among CHIs from different species. Notably,these structural elements formed the active site on the protein surface,and the topology of the active-site cleft defined the stereochemistry of the cyclization reaction. The homology comparison showed that Ah CHS had the highest similarity to the CHS of Anthurium andraeanum,while Ah CHI had the highest similarity to the CHI of Paeonia delavayi. This study provided the basis for the functional study of Ah CHS and Ah CHI and the further study on plant flavonoid biosynthesis pathway.


Asunto(s)
Aciltransferasas/genética , Arisaema/enzimología , Liasas Intramoleculares/genética , Proteínas de Plantas/genética , Aciltransferasas/química , Arisaema/genética , Clonación Molecular , Liasas Intramoleculares/química , Proteínas de Plantas/química
16.
Plant Methods ; 15: 65, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31289459

RESUMEN

BACKGROUND: Polygonatum cyrtonema Hua (P. cyrtonema) is one of the most important herbs in traditional Chinese medicine. Polysaccharides in P. cyrtonema plants comprise a class of important secondary metabolites and exhibit a broad range of pharmacological functions. RESULTS: In order to identify genes involved in polysaccharide biosynthesis, we performed RNA sequencing analysis of leaf, root, and rhizome tissues of P. cyrtonema. A total of 164,573 unigenes were obtained by assembling transcripts from all three tissues and 86,063 of these were annotated in public databases. Differentially expressed genes (DEGs) were determined based on expression profile analysis, and DEG levels in rhizome tissues were then compared with their counterparts in leaf and root tissues. This analysis revealed numerous genes that were either up-regulated or uniquely expressed in the rhizome. Multiple genes encoding important enzymes, such as UDP glycosyltransferases (UGTs), or transcription factors involved in polysaccharide biosynthesis were identified and further analyzed, while a few genes encoding key enzymes were experimentally validated using quantitative real-time PCR. CONCLUSION: Our results substantially expand the public transcriptome dataset of P. cyrtonema and provide valuable clues for the identification of candidate genes involved in metabolic pathways.

17.
Int J Mol Sci ; 20(11)2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31146369

RESUMEN

Clinopodium chinense (Benth.) O. Kuntze (C. chinense) is an important herb in traditional Chinese medicine. Triterpenoid saponins are a major class of active compounds in C. chinense with broad pharmacological activities and hemostatic, antitumor, and anti-hyperglycemic effects. To identify genes involved in triterpenoid saponin biosynthesis, transcriptomic analyses of leaves, stems, and roots from C. chinense were performed. A total of 135,968 unigenes were obtained by assembling the leaf, stem, and root transcripts, of which 102,154 were annotated in public databases. Differentially expressed genes were determined based on expression profile analysis and analyzed for differential expression of unique genes related to triterpenoid saponin biosynthesis. Multiple unigenes encoding crucial enzymes or transcription factors involved in triterpenoid saponin synthesis were identified and analyzed. The expression levels of unigenes encoding enzymes were experimentally validated using quantitative real-time PCR. This study greatly broadens the public transcriptome database for this species and provides a valuable resource for identifying candidate genes involved in the biosynthesis of triterpenoid saponins and other secondary metabolites.


Asunto(s)
Genes de Plantas , Lamiales/genética , Saponinas/biosíntesis , Transcriptoma , Lamiales/metabolismo , Saponinas/genética
18.
Sci Rep ; 8(1): 17643, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518768

RESUMEN

Arisaema heterophyllum Blume (AhBl) is one of the valued medicinal plants. However, its genetic information is limited, which impedes further studies of this valuable resource. To investigate the genes involved in the isoflavonoid biosynthesis, we deeply performed transcriptome sequencing for AhBl. An average of 10.98 Gb clean reads were obtained based on root, tuber and leaf tissues, and 109,937 unigenes were yielded after de novo assembly. In total, 72,287 of those unigenes were annotated in at least one public database. The numbers of expressed unigenes in each tissue were 35,686, 43,363 and 47,783, respectively. The overall expression levels of transcripts in leaf were higher than those in root and tuber. Differentially expressed genes analysis indicated that a total of 12,448 shared unigenes were detected in all three tissues, 10,215 of which were higher expressed in tuber than that in root and leaf. Besides, 87 candidate unigenes that encode for enzymes involved in biosynthesis of isoflavonoid were identified and analyzed, and some key enzyme genes were experimentally validated by quantitative Real-Time PCR (qRT-PCR). This study provides a unique dataset for the systematic analysis of AhBl functional genes and expression characteristics, and facilitates the future study of the pharmacological mechanism of AhBl.


Asunto(s)
Arisaema/genética , Isoflavonas/genética , Proteínas de Plantas/genética , Transcriptoma , Arisaema/metabolismo , Vías Biosintéticas , Perfilación de la Expresión Génica , Ontología de Genes , Genes de Plantas , Isoflavonas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo
19.
Sci Rep ; 8(1): 5824, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29643397

RESUMEN

Artemisia argyi Lev. et Vant. (A. argyi) is widely utilized for moxibustion in Chinese medicine, and the mechanism underlying terpenoid biosynthesis in its leaves is suggested to play an important role in its medicinal use. However, the A. argyi transcriptome has not been sequenced. Herein, we performed RNA sequencing for A. argyi leaf, root and stem tissues to identify as many as possible of the transcribed genes. In total, 99,807 unigenes were assembled by analysing the expression profiles generated from the three tissue types, and 67,446 of those unigenes were annotated in public databases. We further performed differential gene expression analysis to compare leaf tissue with the other two tissue types and identified numerous genes that were specifically expressed or up-regulated in leaf tissue. Specifically, we identified multiple genes encoding significant enzymes or transcription factors related to terpenoid synthesis. This study serves as a valuable resource for transcriptome information, as many transcribed genes related to terpenoid biosynthesis were identified in the A. argyi transcriptome, providing a functional genomic basis for additional studies on molecular mechanisms underlying the medicinal use of A. argyi.


Asunto(s)
Artemisia/genética , Regulación de la Expresión Génica de las Plantas , Terpenos/metabolismo , Transcriptoma/fisiología , Artemisia/metabolismo , Vías Biosintéticas/genética , China , Biología Computacional , Perfilación de la Expresión Génica , Genes de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Medicina Tradicional China/métodos , Anotación de Secuencia Molecular , Moxibustión/métodos , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Análisis de Secuencia de ARN
20.
J Altern Complement Med ; 17(6): 513-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21649517

RESUMEN

OBJECTIVES: The aim of this study was to explore the risk of hemorrhage associated with co-prescriptions for Ginkgo biloba extract (GBE) and antiplatelet or anticoagulant agents, and evaluate the trends of co-prescriptions. METHODS: A retrospective population based study was performed by using claim data of the Taiwan National Health Insurance Research Database from 2000 to 2008. Prescriptions for GBE alone and in combination with antiplatelet/anticoagulant drugs were retrieved and the odds ratio for co-prescriptions after the first prescription of GBE was explored. RESULTS: The total number of prescriptions for GBE alone or in combination with antiplatelet or anticoagulant agents increased gradually from 1547 (0.08%) and 3575 (0.19%) in 2000 to 4676 (0.23%) and 15,297 (0.79%) in 2008, respectively. GBE was mostly prescribed to patients aged 60 years or older. The adjusted odds ratio for co-prescriptions associated with the risk of hemorrhage is 1.5 (95% confidence interval, 0.5-5.0). The risk of hemorrhage was associated with patients aged ≥65 and male patients, who were prescribed GBE alone (adjusted odds ratio: 3.8 and 1.4; 95% confidence interval, 2.8-5.2 and 1.1-1.9). CONCLUSIONS: Although the combination of G. biloba extract with antiplatelet or anticoagulants showed insignificant correlation to the risk of hemorrhage, patients using ginkgo, particularly those with known bleeding risks and elderly, should take a particular attention to the possibility of increasing risk of bleeding.


Asunto(s)
Anticoagulantes/efectos adversos , Prescripciones de Medicamentos/estadística & datos numéricos , Ginkgo biloba , Hemorragia/inducido químicamente , Interacciones de Hierba-Droga , Fitoterapia/efectos adversos , Inhibidores de Agregación Plaquetaria/efectos adversos , Adolescente , Adulto , Factores de Edad , Anciano , Anticoagulantes/uso terapéutico , Quimioterapia Combinada/efectos adversos , Quimioterapia Combinada/tendencias , Humanos , Seguro de Salud , Persona de Mediana Edad , Oportunidad Relativa , Extractos Vegetales , Inhibidores de Agregación Plaquetaria/uso terapéutico , Estudios Retrospectivos , Riesgo , Factores Sexuales , Taiwán , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA