Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biomed Pharmacother ; 174: 116597, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643544

RESUMEN

Zhen-Wu-Tang (ZWT), a conventional herbal mixture, has been recommended for treating lupus nephritis (LN) in clinic. However, its mechanisms of action remain unknown. Here we aimed to define the immunological mechanisms underlying the effects of ZWT on LN and to determine whether it affects renal tissue-resident memory T (TRM) cells. Murine LN was induced by a single injection of pristane, while in vitro TRM cells differentiated with IL-15/TGF-ß. We found that ZWT or mycophenolate mofetil treatment significantly ameliorated kidney injury in LN mice by decreasing 24-h urine protein, Scr and anti-dsDNA Ab. ZWT also improved renal pathology and decreased IgG and C3 depositions. In addition, ZWT down-regulated renal Desmin expression. Moreover, it lowered the numbers of CD8+ TRM cells in kidney of mice with LN while decreasing their expression of TNF-α and IFN-γ. Consistent with in vivo results, ZWT-containing serum inhibited TRM cell differentiation induced by IL-15/TGF-ß in vitro. Mechanistically, it suppressed phosphorylation of STAT3 and CD122 (IL2/IL-15Rß)expression in CD8+ TRM cells. Importantly, ZWT reduced the number of total F4/80+CD11b+ and CD86+, but not CD206+, macrophages in the kidney of LN mice. Interestingly, ZWT suppressed IL-15 protein expression in macrophages in vivo and in vitro. Thus, we have provided the first evidence that ZWT decoction can be used to improve the outcome of LN by reducing CD8+ TRM cells via inhibition of IL-15/IL-15R /STAT3 signaling.


Asunto(s)
Linfocitos T CD8-positivos , Medicamentos Herbarios Chinos , Interleucina-15 , Riñón , Nefritis Lúpica , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Factor de Transcripción STAT3/metabolismo , Interleucina-15/metabolismo , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/inmunología , Nefritis Lúpica/metabolismo , Nefritis Lúpica/patología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Medicamentos Herbarios Chinos/farmacología , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Femenino , Ratones Endogámicos C57BL , Células T de Memoria/efectos de los fármacos , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Diferenciación Celular/efectos de los fármacos
2.
Front Pharmacol ; 12: 777670, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35757387

RESUMEN

Chronic glomerulonephritis (CGN) is one of the major causes of end-stage kidney disease. Zhen-wu-tang (ZWT), as a famous Chinese herbal prescription, is widely used in China for CGN therapy in clinic. However, the mechanism of ZWT in CGN has not been fully understood. The present study explored the therapeutic effect and the underlying mechanism of ZWT on mitochondrial function in cationic bovine serum albumin (C-BSA)-induced CGN model rats and tumor necrosis factor (TNF-α)-damaged mouse podocytes. The renal functions were measured by serum creatinine (Scr) and blood urea nitrogen (BUN). Renal pathological changes and ultrastructure of kidney tissues were evaluated by periodic acid-Schiff (PAS) staining and transmission electron microscopy. The levels of antioxidases, including mitochondrial catalase (CAT), superoxide dismutase 2 (SOD2), and peroxiredoxin 3 (PRDX3), in CGN rats were examined by real-time PCR. The mitochondrial functions of podocytes were measured by ATP concentration, mitochondrial membrane potential (MMP), and mitochondrial ROS (mtROS). For mitophagy level detection, the expressions of mitophagy-related proteins, including LC3, p62, heat shock protein 60 (HSP60), and translocase of outer mitochondrial membrane 20 (TOMM20), were measured by Western blot, as the colocation of LC3 and mitochondrial marker COX IV were evaluated by immunofluorescence. Our results manifested that ZWT ameliorated CGN model rats by a remarkable decrease in Scr and BUN, inhibition of mesangial matrix proliferation, protection against foot processes fusion, and basement membrane thickening. More importantly, ZWT protected against mitochondrial dysfunction by increasing the expressions of CAT, SOD2, and PRDX3 in CGN model rats, increased ATP content and MMP in podocytes, and decreased excessive mtROS. Furthermore, ZWT induced mitophagy in CGN through increasing the expression of LC3, and decreasing p62, HSP60, TOMM20, and ZWT also enhanced the colocation of LC3 to the mitochondria. We found that ZWT inhibited the PI3K/AKT/mTOR pathway, which could be disturbed by PI3K inhibitor LY294002 and agonist insulin-like growth factor 1. Moreover, ZWT reversed the inhibition of the AMPK pathway in CGN. Overall, ZWT ameliorated renal mitochondrial dysfunction probably by inducing mitophagy via the PI3K/AKT/mTOR and AMPK pathways.

3.
Phytother Res ; 34(12): 3236-3248, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32726508

RESUMEN

Astragaloside IV(AS-IV), a saponin purified from Astragalus membranaceus (Fisch.) Bge.var.mongholicus (Bge.) Hsiao, has been widely used in traditional Chinese medicine. However, the underlying mechanisms in treating chronic glomerular nephritis (CGN) have not been fully understood. The aim of the present study was to evaluate the potential mechanism of AS-IV on CGN. CGN rats were administrated with AS-IV at 10 mg·kg-1 ·d-1 (ASL) and 20 mg·kg-1 ·d-1 (ASH). Twenty four hour proteinuria, blood urea nitrogen (BUN), and serum creatinine (SCr) were detected. Hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) staining were performed to evaluate the kidney lesion. Transmission electron microscope and GFP-RFP-LC3 transfection assay were used to monitor the effect of AS-IV on autophagy. IL-6 and IL-1ß were detected. The expression of CyclinD1, PI3K/AKT/AS160 pathway and autophagy related proteins were detected by Western Blot. The results demonstrated that AS-IV improved kidney function, ameliorated kidney lesion, and diminished inflammatory in CGN rats. Further, both in vivo and vitro study demonstrated that AS-IV inhibited the proliferation of mesangial cells. AS-IV further displayed a remarkable effect on inhibiting the activation of PI3K/AKT/AS160 pathway and improved the activation of autophagy in vivo and vitro. These results suggested that AS-IV is a potential therapeutic agent for CGN and merits further investigation.


Asunto(s)
Autofagia/efectos de los fármacos , Glomerulonefritis/prevención & control , Insuficiencia Renal Crónica/prevención & control , Saponinas/farmacología , Triterpenos/farmacología , Animales , Astragalus propinquus/química , Células Cultivadas , Citoprotección/efectos de los fármacos , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/patología , Transducción de Señal/efectos de los fármacos
4.
Biomed Pharmacother ; 128: 110241, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32450523

RESUMEN

Renal fibrosis is a kind of progressive kidney disease leading to end-stage renal damage. Epithelial-mesenchymal transition (EMT) is one of the crucial features of renal fibrosis. Salvianolic acid B (SalB), isolated from traditional Chinese medicine Radix Salviae miltiorrhizae, has been proved to be suitable for renal protection. The aims of this study are to investigate the pharmacological effects of SalB on renal fibrosis and explore the underlying mechanisms. In vivo, our study showed that SalB could improve kidney dysfunction and reduce the expression of EMT-related proteins, including fibronectin (FN), α-smooth muscle actin (α-SMA) and transforming growth factor-ß (TGF-ß). In addition, SalB activated autophagy and up-regulated the expression of Sirt1. In vitro, our study showed that SalB reversed EMT in TGF-ß1-induced human kidney proximal tubular epithelial cells (HK-2 cells). Further mechanism studies showed that the inhibition of Sirt1 and autophagy could reverse the protective effect of SalB on the EMT process in TGF-ß1-induced HK-2 cells. Taken together, this study demonstrated that SalB attenuates EMT in the process of renal fibrosis through activating Sirt1-mediated autophagy, and Sirt1 could be a key target for treatment of renal fibrosis.


Asunto(s)
Autofagia/efectos de los fármacos , Benzofuranos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Enfermedades Renales/prevención & control , Riñón/efectos de los fármacos , Sirtuina 1/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Fibronectinas/metabolismo , Fibrosis , Humanos , Riñón/enzimología , Riñón/ultraestructura , Enfermedades Renales/enzimología , Enfermedades Renales/patología , Masculino , Ratas Sprague-Dawley , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
5.
Food Funct ; 10(8): 5102-5114, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31363726

RESUMEN

The present study was designed to investigate the protective effects of Cordyceps militaris polysaccharides (CMP) on STZ-treated DN mice. CMP were identified by FT-IR and HPLC. Diabetic nephropathy (DN) was induced in male C57BL/6 mice by the injection of streptozotocin (STZ, 50 mg kg-1) in citrate buffer on 5 consecutive days. Administration of CMP at 200 and 400 mg kg-1 or irbesartan at 60 mg kg-1 in the STZ-treated mice could prevent the damage caused by STZ. CMP significantly reduced the STZ-induced higher expression of the kidney index, TC, TG, MDA, urinary protein, Scr, and BUN, while it markedly increased the STZ-induced decrease in GSH levels compared with the DN group. Histopathology analysis of the kidney by PAS, Masson, and HE staining confirmed the renal injury induced by STZ and the protective effects of CMP. Transmission electron microscopy (TEM) results confirmed the severe foot process effacement induced by STZ, but CMP treatment inhibited the podocytes' structure defects and ameliorated the function of podocytes. Desmin was measured by immunofluorescence and was related to podocyte injury. The results showed that CMP lessened the expression of desmin induced by STZ. CD68 expression was measured by immunohistochemistry analysis, and the expressions of IL-1ß, IL-6, and MCP-1 mRNA were measured by qRT-PCR. The results showed that CMP suppressed the expressions of CD68, IL-1ß, IL-6, and MCP-1 mRNA induced by STZ. The role of autophagy in the treatment of DN mice with CMP was detected by TEM and western blotting. The results showed that the administration of CMP was able to overcome the STZ-treated autophagy deficiency, significantly increase the rate of autophagy in the kidney, promote the expression of Atg5, beclin1 and LC3 protein, and reduce the expression of p62 protein. In conclusion, the present study demonstrates that CMP exert a protective effect on DN in STZ-treated mice possibly via activation of autophagy.


Asunto(s)
Cordyceps/química , Nefropatías Diabéticas/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Polisacáridos/administración & dosificación , Animales , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/fisiopatología , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Biochem Pharmacol ; 169: 113619, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31465776

RESUMEN

Immunoglobulin A nephropathy (IgAN) is an autoimmune kidney disease with complex pathogenesis leading to end-stage renal damage. The prime pathological characteristics of IgAN are IgA immune complexes deposition accompany with mesangial cell proliferation and urine protein elevation. Artemisinin (ART) is extracted from traditional Chinese medicine Artemisia annua L. Hydroxychloroquine (HCQ) is a classical antimalarial drug applied in the treatment of autoimmune diseases. Both of them possess anti-inflammatory and immunomodulatory properties. The purpose of this research was to investigate the pharmacological effects of ART combined with HCQ (AH) and discuss thoroughly the potential molecular mechanisms in IgAN. In vivo, our results demonstrated that AH could efficiently ameliorate kidney damage by improving kidney dysfunction and reducing the levels of 24 h urine protein, IgA and IgG immune complexes deposition in glomerulus of IgAN rats. Interestingly, AH obviously promoted the secretion of exosomes in renal tissues, inhibited the expressions of nuclear factor-κB (NF-κB) signaling and NLRP3 inflammasome-related proteins, including IκB-α, p-p65, NLRP3, ASC, IL-1ß and caspase-1 in IgAN rats. In vitro, further mechanistic study illustrated that exosomes derived from human renal tubular epithelial cells (HK-2) were significantly enhanced by AH, which could be utterly taken up in human mesangial cells (HMCs) and inhibited the activation of NF-κB pathway and NLRP3 inflammasome after AH intervention. However, GW4869 interdicted the promotive effect of AH on exosomes from HK-2 cells and the suppression of exosomes on NF-κB/NLRP3 activation in HMCs. Taken together, this study demonstrated that there was an inhibitory effect of AH therapy on NF-κB/NLRP3 signaling via mediating exosomes release in IgAN rats, which provided an alternative approach for IgAN treatment.


Asunto(s)
Artemisininas/administración & dosificación , Artemisininas/farmacología , Exosomas/efectos de los fármacos , Glomerulonefritis por IGA/tratamiento farmacológico , Hidroxicloroquina/administración & dosificación , Inflamasomas/antagonistas & inhibidores , Riñón/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Compuestos de Anilina/farmacología , Animales , Compuestos de Bencilideno/farmacología , Células Cultivadas , Quimioterapia Combinada , Exosomas/fisiología , Humanos , Inflamasomas/fisiología , Masculino , FN-kappa B/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
7.
Phytomedicine ; 59: 152913, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30991182

RESUMEN

BACKGROUND: Zhen-wu-tang (ZWT), a traditional herbal formula, has been widely used for the treatment of kidney diseases in clinics, but the underlying molecular mechanisms have not been fully understood. PURPOSE: Inflammation mediated podocyte injury has been reported to constitute a crucial part in the pathogenesis of membranous nephropathy (MN). The current study was designed to evaluate the effect of ZWT on MN related to nuclear factor-κB (NF-κB) pathway and NLRP3 inflammasome. METHODS: The main components of ZWT were identified by 3D-ultra performance liquid chromatography (3D-UPLC) assay. A MN rat model induced by cationic-bovine serum albumin (C-BSA) and podocytes stimulated by TNF-α were used in this study. The 24 h urine protein, serum total cholesterol (TC) and triglyceride (TG), as well as kidney histology were measured to evaluate kidney damage. The expressions of IgG and complement 3 (C3), and the co-localization of NLRP3 and ASC were detected by immunofluorescence. The expressions of podocyte injury related protein desmin, podocin were measured by immunohistochemistry and western blot. Cell vitality of cultured podocytes was detected by MTT assay, as apoptosis assay was measured via flow cytometry. The protein expressions of p-p65, p-IκBα, NLRP3, Caspase-1, IL-1ß were detected by western blot. RESULTS: Our results showed that ZWT significantly ameliorated kidney damage in MN model rats by decreasing the levels of 24 h urine protein, TC and TG. ZWT also improved renal histology and reduced the expressions of IgG and C3 in glomerulus. In addition, ZWT lessened the expressions of desmin, but increased podocin expression in vivo and vitro. ZWT protected cultured podocytes by maintaining cell vitality and inhibiting apoptosis. Moreover, we found that ZWT suppressed the expressions of NLRP3, Caspase-1, IL-1ß and the co-localization of NLRP3 and ASC. Furthermore, the inhibition of NLRP3 inflammasome under ZWT treatment were accompanied by down-regulation of NF-κB pathway, as the p-p65 and p-IκBα protein expression were reduced. CONCLUSIONS: Our present study indicates that the inhibition of NF-κB pathway and NLRP3 inflammasome might be the potential mechanisms for the therapeutic effects of ZWT against MN.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Glomerulonefritis Membranosa/tratamiento farmacológico , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasa 1/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas I-kappa B/metabolismo , Inflamasomas/efectos de los fármacos , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Glomérulos Renales/efectos de los fármacos , Masculino , Inhibidor NF-kappaB alfa/metabolismo , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
8.
Int Immunopharmacol ; 70: 313-323, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30852287

RESUMEN

Immunoglobulin A nephropathy (IgAN) is an autoimmune kidney disease with complex pathogenesis leading to end-stage renal damage. The crucial pathological characteristic in IgAN is IgA immune complexes deposition accompany with mesangial cell proliferation and mesangial matrix expansion. Artemisinin (ART) is isolated from traditional Chinese medicine Artemisia annua L. Hydroxychloroquine (HCQ) is a classical antimalarial drug used to treat autoimmune diseases. Both of them possess immunosuppressive, immunomodulatory and anti-inflammatory features. The aim of this study was to investigate the pharmacological effects of ART combined with HCQ (AH) and explore the underlying mechanisms in IgAN. In vivo, our results showed that AH could significantly improve kidney dysfunction, decrease mesangial matrix expansion as well as immune complexes in mesangial area visualized by H&E and PAS staining. The depositions of IgA immune complexes and complement 3 (C3) were obviously reduced after AH treatment by immunofluorescence. Interestingly, the morphology of kidney and spleen was significantly swelled but reverted by AH in IgAN rats. Further mechanistic study showed that the higher proportions of the Th2 and Th17 cells were reduced but the lower differentiation of Th1 and Treg cells subsets were promoted by AH. Taken together, this study demonstrated that there was an immunosuppressive effect of AH therapy on IgAN rats via regulating the differentiation of CD4+ T cell subsets, which provided an alternative approach for IgAN treatment.


Asunto(s)
Artemisininas/uso terapéutico , Quimioterapia Combinada , Glomerulonefritis por IGA/tratamiento farmacológico , Hidroxicloroquina/uso terapéutico , Inmunosupresores/uso terapéutico , Células Mesangiales/fisiología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Células Th2/inmunología , Animales , Complejo Antígeno-Anticuerpo/metabolismo , Artemisia annua/inmunología , Antígenos CD4/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Masculino , Medicina Tradicional China , Ratas , Ratas Sprague-Dawley
9.
Biomed Pharmacother ; 109: 1296-1305, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30551379

RESUMEN

Nephrotic syndrome (NS) is characterized by proteinuria, hypoalbuminemia and edema. The disorder of sodium and water metabolism is a critical mechanism regulating the origination and progression of NS. Zhen-wu-tang (ZWT) has been traditionally used to treat edema disease in China and Japan. The present study was carried out to assess the protective effect of ZWT in Adriamycin-induced (ADR) NS rats and investigate the potential anti-NS mechanisms of ZWT. We found that ZWT treatment ameliorate impaired kidney function and regulate water balance of kidney. Importantly, ZWT increased the expression of Aquaporin-2 (AQP2) which play key roles in maintaining body water homeostasis. Additionally, we determined miRNAs expression patterns in NS rats. Using bioinformatics prediction and miR-92b mimic or inhibitor in vitro, we identified miR-92b as a possible modulator of AQP2. Also we found that ZWT can decrease the expression of miR-92b and reverse the effect of miR-92b on AQP2 in vitro. We further demonstrated that miR-92b directly regulated AQP2 expression by targeting 3'-UTR of AQP2. These finding suggest that ZWT may reduce renal edema in Adriamycin-induced nephropathy via regulating AQP2 and miR-92b.


Asunto(s)
Acuaporina 2/metabolismo , Doxorrubicina/farmacología , Medicamentos Herbarios Chinos/farmacología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , MicroARNs/metabolismo , Animales , China , Japón , Riñón/efectos de los fármacos , Riñón/metabolismo , Enfermedades Renales/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
10.
Zhongguo Zhong Yao Za Zhi ; 43(15): 3205-3210, 2018 Aug.
Artículo en Chino | MEDLINE | ID: mdl-30200719

RESUMEN

In recent years,hepatotoxicity problem of Polygonum multiflorum has caused high attention. Domestic scholars also explored the causes of liver damage caused by it. For example, the establishment of guideline for diagnosis and treatment of herb-induced liver injury, and the theory about relationship between hepatocyte toxicity and chemical composition, solvents, processing, use and pathological basis of patients and so on. To try to combine theory with practice,author analyzed risk factors about the case reports of P. multiflorum causing liver damage, and made some suggestions on P. multiflorum about individualized application, drug selection and requirements for taking. This for providing reference for the safe use of P. multiflorum.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Fallopia multiflora/química , Hepatocitos/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos/toxicidad , Fallopia multiflora/toxicidad , Humanos , Estudios Retrospectivos , Factores de Riesgo
11.
Biomed Pharmacother ; 101: 635-647, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29518610

RESUMEN

Zhen-wu-tang (ZWT) has been widely applied in chronic kidney diseases. However, the mechanism of ZWT remains unclear. Peroxisome proliferator-activated receptors-γ (PPARγ) is known as a protective factor for podocyte and kidney function. This study is aimed to investigate the protective effects of ZWT on IgA nephropathy (IgAN) in rats against podocyte injury and the underlying mechanism related to PPARγ. IgAN model rats were induced by administering bovine serum albumin, lipopolysaccharide, and carbon tetrachloride. ZWT at two doses and GW9662 (PPARγ antagonist) was administered once daily for 4 weeks respectively. Cultured podocyte induced by LPS were used to evaluate the podocyte-protective effect and related mechanism of ZWT in vitro. Results showed that ZWT observably reduced proteinuria and hematuria excretion, as well as the levels of blood urea nitrogen, serum creatinine, serum uric acid, low-density lipoprotein cholesterol, total cholesterol and triglycerides, but increased the contents of high-density lipoprotein cholesterol, ameliorating renal function and hyperlipidemia state in IgAN rats. Besides, both ZWT administration groups alleviated kidney pathological lesion, macrophage infiltration, IgA and C3 deposition in glomeruli. To further demonstrate the protective effects of ZWT, we found that podocyte damage was markedly ameliorated with ZWT treatments in IgAN rats and LPS-induced podocyte injury model by suppressing the expressions of desmin, reducing podocyte apoptosis and augmenting nephrin and podocin levels. Moreover, ZWT inhibited the phosphorylation of NF-κB and IκBα, simultaneously upregulated PPARγ. However, GW9662 made no difference in all the above effects compared to the model group, and was reversed by ZWT in vitro study. In conclusion, these results demonstrated that ZWT ameliorated IgAN-induced podocyte injury via upregulation PPARγ and the underlying mechanism might involve the inhibition of NF-κB pathway.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Glomerulonefritis por IGA/tratamiento farmacológico , Glomerulonefritis por IGA/metabolismo , FN-kappa B/metabolismo , PPAR gamma/metabolismo , Podocitos/metabolismo , Animales , Línea Celular Transformada , Medicamentos Herbarios Chinos/farmacología , Glomerulonefritis por IGA/patología , Masculino , Podocitos/efectos de los fármacos , Podocitos/patología , Ratas , Ratas Sprague-Dawley
12.
Chin J Integr Med ; 23(10): 770-778, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27048408

RESUMEN

OBJECTIVE: To investigate the underlying mechanisms of cyclovirobuxinum D (Cvb-D) on alleviating cardiac hypertrophy in rats. METHODS: Sprague-Dawley rats were randomly divided into 5 groups: control group; levothyroxine-induced cardiac hypertrophy group (model); levothyroxine-induced cardiac hypertrophy + Cvb-D group (Cvb-D); levothyroxine-induced cardiac hypertrophy + captopril group (captopril); levothyroxine-induced cardiac hypertrophy + SB203580 group (SB203580), n=10 for each group. Rats were daily administered the respective drugs continuously for14 days by gastric gavage. A rat model of cardiac hypertrophy was established by intraperitoneal injection of levothyroxine to investigate whether Cvb-D protects against cardiac hypertrophy by inhibiting the p38 mitogen-activated protein kinase (MAPK) signaling pathway and preventing apoptosis of cardiac cells. RESULTS: Treatment with Cvb-D significantly deceased left ventricle hypertrophy, improved the histopathology, hemodynamic conditions, and cardiac function in rats with cardiac hypertrophy. Compared with the normal control group, in rats with cardiac hypertrophy, expression of bax in the heart and phospho-p38 MAPK protein levels were significantly up-regulated (P<0.01 or 0.05), whereas the bcl-2 protein level was down-regulated (P<0.01). In contrast, Cvb-D treatment reversed the changes in bax and phospho-p38 MAPK protein levels but increased the bcl-2 protein level (P<0.01 or 0.05), and these effects were similar to those of captopril and SB203580 (a specific p38MAPK inhibitor) treatment. Furthermore, both Cvb-D, captopril and SB203580 reduced mRNA expression of p38α, p38ß, c-fos, and c-jun mRNA, and Cvb-D had a stronger effect (P<0.01). CONCLUSION: These results demonstrate that Cvb-D protects against cardiac hypertrophy, which is possibly mediated by prevention of cardiac cell apoptosis and inhibition of the p38MAPK signaling pathway.


Asunto(s)
Apoptosis , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Medicamentos Herbarios Chinos/uso terapéutico , Hipertiroidismo/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas , Miocitos Cardíacos/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Cardiomegalia/complicaciones , Cardiomegalia/enzimología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Ácidos Grasos/metabolismo , Hemodinámica/efectos de los fármacos , Hipertiroidismo/complicaciones , Hipertiroidismo/enzimología , Hipertiroidismo/patología , Hipertrofia Ventricular Izquierda/complicaciones , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Hipertrofia Ventricular Izquierda/patología , Riñón/efectos de los fármacos , Riñón/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Malondialdehído/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Fosforilación/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo
13.
Int Immunopharmacol ; 33: 33-41, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26851631

RESUMEN

Zhen-wu-tang (ZWT), a traditional Chinese compound formula recorded in the Treatise on Febrile Diseases, has significant inhibitory effects on inflammatory damage and oxidative lesions in rats, but its mechanism of action remains unclear. The aim of the present study was to explore whether the anti-inflammatory and anti-oxidative effects of ZWT were mediated by the AGEs/RAGE/NF-κB signaling pathway in rats with cationic bovine serum albumin (C-BSA)-induced membranous glomerulonephritis (MGN). We found that ZWT significantly reduced the production of malondialdehyde (MDA), but enhanced the superoxide dismutase (SOD) activity. The ELISA results showed that ZWT not only reduced the serum levels of AGEs but also decreased the release of inflammatory mediators (TNF-α, IL-1ß, and IL-6). Meanwhile, HE staining showed that pathological kidney injury was alleviated by ZWT. In addition, ZWT suppressed the expression of RAGE1 and NF-κB p65, as well as the nuclear translocation of NF-κB p65. The accumulation of AGEs, oxidative lesions and inflammation damage were reduced by an AGE inhibitor. Thus, the present study demonstrates that AGEs play a role in the pathogenesis of MGN and that AGE inhibition could reduce the inflammatory reactions and oxidative lesions in MGN. In general, ZWT attenuated MGN, in part, by inhibiting the AGEs/RAGE/NF-κB pathway.


Asunto(s)
Antiinflamatorios/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Glomerulonefritis Membranosa/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Medicina Tradicional China , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Albúmina Sérica Bovina , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-25866534

RESUMEN

Berberine (Ber), an isoquinoline derivative alkaloid and active ingredient of Coptis, has been demonstrated to possess antidiabetic activities. However its low oral bioavailability restricts its clinical application. In this report, Ber nanosuspension (Ber-NS) composed of Ber and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was prepared by high pressure homogenization technique. Antidiabetic effects of Ber-NS relative to efficacy of bulk Ber were evaluated in streptozotocin (STZ) induced diabetic C57BL/6 mice. The particle size and zeta potential of Ber-NS were 73.1 ± 3.7 nm and 6.99 ± 0.17 mV, respectively. Ber-NS (50 mg/kg) treatment via oral gavage for 8 weeks resulted in a superior hypoglycemic and total cholesterol (TC) and body weight reduction effects compared to an equivalent dose of bulk Ber and metformin (Met, 300 mg/kg). These data indicate that a low dosage Ber-NS decreases blood glucose and improves lipid metabolism in type 2 diabetic C57BL/6 mice. These results suggest that the delivery of Ber as a nanosuspension is a promising approach for treating type 2 diabetes.

15.
Artículo en Inglés | MEDLINE | ID: mdl-24812565

RESUMEN

Zhen-wu-tang (ZWT), a well-known formula in China, is widely used to treat chronic kidney diseases. However, very little information on ZWT's mechanism of action is currently available. In this study, we investigated the possible protective role and underlying mechanism of ZWT on nephrotic syndrome (NS) induced by Adriamycin (intravenous injection, 6.0 mg/kg) in rats using biochemical and histopathological approaches. ZWT decreased urine protein excretion and the serum levels of total cholesterol, triglycerides, blood urea nitrogen, and creatinine significantly in diseased rats. A decrease in plasma levels of total protein and albumin was also recorded in nephropathic rats. Pathological results show an improved pathological state and recovering glomerular structure in ZWT treatment groups. ZWT decreased renal IL-8 level but increased renal IL-4 level. In addition, rats subjected to ZWT exhibited less IgG deposition in glomerulus compared with model group. RT-PCR results showed that ZWT decreased the mRNA expression of NF- κ B p65 and increased the mRNA expression of I κ B. Furthermore, ZWT reduced the level of MDA and increased SOD activity. These results demonstrated that ZWT ameliorated Adriamycin-induced NS in rats possibly by inhibiting Adriamycin-induced inflammation damage, enhancing body's antioxidant capacity, thereby protecting glomerulus from injury.

16.
J Ethnopharmacol ; 151(3): 1124-1132, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24389029

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Nephrotic syndrome (NS) is a clinical syndrome with a variety of causes, mainly characterized by heavy proteinuria. Podocyte injury plays a key role in proteinuria, one of the principal means for the control of NS is to prevent podocyte injury. Qi-Dan Fang consists of two of the most extensively applied herbal remedies among Traditional Chinese Medicine (TCM) (Radix Astragali Mongolici and Radix Salviae Miltiorrhizae, with a weight ratio of 5:1) which are specifically used for the treatment of various kidney diseases. In previous studies, we found that Qi-Dan Fang provides improvement to patients with adriamycin-induced nephrotic syndrome by alleviating proteinuria and serum lipid. The aim of this study is to study the efficiency of Qi-Dan Fang on NS model rat with renal dysfunction and podocyte injury, something which has not been carried out yet. MATERIALS AND METHODS: The rats were divided into Normal, Model, Jin Gui Shen Qi Pill (4.12 g/kg), Qi-Dan Fang (3.09, 6.17 and 12.34 g/kg/d) groups, they were each given a single tail intravenous injection of Adriamycin (6.0 mg/kg) except for the Normal group and were orally administered dosages of Qi-Dian Fang and Jin Gui Shen Qi pills once daily for 7 weeks. Following the treatment, the content of cystation C (CysC), blood urea nitrogen (BUN), serum creatinine (Scr) were measured with an autobiochemical analyser. The pathomorphological changes to the glomeruli, the mRNA expressions of nephrin, podocin, CD2AP genes and p53, bax, bcl-2 proteins expressions were also carried out to probe the effects of Qi-Dan Fang. RESULTS: (1) Qi-Dan Fang treatment raised the level of CysC in blood serum while lowering the content of BUN and Scr in the adriamycin-induced nephrotic syndrome rat model; (2) Long-term administration of Qi-Dan Fang was able to ameliorate pathomorphological change of glomeruli and repair the organization structure of Glomerulus; (3) Qi-Dan Fang could increase the mRNA expression of nephrin, podocin and CD2AP genes, down-regulate the expression of p53, bax proteins, while increased bcl-2 protein to protect the podocyte and restore Glomerular selective filtration function. CONCLUSIONS: Results of our present studies reveal that Qi-Dan Fang is able to enhance renal function, inhibit podocyte injury to provide improvements to the Adriamycin-induced nephrotic syndrome.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Síndrome Nefrótico/tratamiento farmacológico , Sustancias Protectoras/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antibióticos Antineoplásicos , Proteínas del Citoesqueleto/genética , Modelos Animales de Enfermedad , Doxorrubicina , Medicamentos Herbarios Chinos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/genética , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Riñón/ultraestructura , Masculino , Proteínas de la Membrana/genética , Microscopía Electrónica de Transmisión , Síndrome Nefrótico/inducido químicamente , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/patología , Fitoterapia , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Podocitos/ultraestructura , Sustancias Protectoras/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA