Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Plant Sci ; 11: 787, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625222

RESUMEN

Rehmannia glutinosa, a perennial medicinal plant, suffers from severe replant disease under consecutive monoculture. The rhizosphere microbiome is vital for soil suppressiveness to diseases and for plant health. Moreover, N-acyl homoserine lactone (AHL)-mediated quorum sensing (QS) regulates diverse behavior in rhizosphere-inhabiting and plant pathogenic bacteria. The dynamics of short-chain AHL-mediated QS bacteria driven by consecutive monoculture and its relationships with R. glutinosa replant disease were explored in this study. The screening of QS bacteria showed that 65 out of 200 strains (32.5%) randomly selected from newly planted soil of R. glutinosa were detected as QS bacteria, mainly consisting of Pseudomonas spp. (55.4%). By contrast, 34 out of 200 (17%) strains from the diseased replant soil were detected as QS bacteria, mainly consisting of Enterobacteriaceae (73.5%). Functional analysis showed most of the QS bacteria belonging to the Pseudomonas genus showed strong antagonistic activities against Fusarium oxysporum or Aspergillus flavus, two main causal agents of R. glutinosa root rot disease. However, the QS strains dominant in the replant soil caused severe wilt disease in the tissue culture seedlings of R. glutinosa. Microbial growth assays demonstrated a concentration-dependent inhibitory effect on the growth of beneficial QS bacteria (i.e., Pseudomonas brassicacearum) by a phenolic acid mixture identified in the root exudates of R. glutinosa, but the opposite was true for harmful QS bacteria (i.e., Enterobacter spp.). Furthermore, it was found that the population of quorum quenching (QQ) bacteria that could disrupt the beneficial P. brassicacearum SZ50 QS system was significantly higher in the replant soil than in the newly planted soil. Most of these QQ bacteria in the replant soil were detected as Acinetobacter spp. The growth of specific QQ bacteria could be promoted by a phenolic acid mixture at a ratio similar to that found in the R. glutinosa rhizosphere. Moreover, these quorum-quenching bacteria showed strong pathogenicity toward the tissue culture seedlings of R. glutinosa. In conclusion, consecutive monoculture of R. glutinosa contributed to the imbalance between beneficial and harmful short-chain AHL-mediated QS bacteria in the rhizosphere, which was mediated not only by specific root exudates but also by the QQ bacterial community.

2.
Ying Yong Sheng Tai Xue Bao ; 30(10): 3509-3517, 2019 Oct.
Artículo en Chino | MEDLINE | ID: mdl-31621238

RESUMEN

Rehmannia glutinosa, a perennial herbaceous species, belongs to the family Scrophularia-ceae. As a staple medicinal material, its tuberous roots are highly valued in traditional Chinese medicine. However, R. glutinosa suffers from serious consecutive monoculture problems in production, which leads to a decline in both productivity and quality. Phyllosphere bacteria, the most abundant component of phyllosphere microorganisms, play crucial roles in plant growth and health. Characterization of phyllosphere bacteria could provide new insights into the mechanisms of consecutive monoculture problems and their control measures. Meanwhile, the varied taxa could be served as an important indicator of consecutive monoculture problems. The barcoded pyrosequencing of 16S rDNA genes combined with a culture-dependent approach was applied to characterize the shifts of bacterial community structure and diversity in the phyllosphere under consecutive monoculture of R. glutinosa. The results showed that consecutive monoculture clearly affected bacterial community structure in the phyllosphere. The phyllosphere bacterial communities of the two-year monocultured (TY) and the diseased plants (DP) were more similar, and different from the one-year monocultured (OY). The evenness, Shannon and Simpson diversity indices were significantly lower in TY and DP than in OY. Species annotation showed that bacterial community in R. glutinosa phyllosphere mainly consisted of Proteobacteria (91.2%), Firmicutes (5.1%) and Actinobacteria (3.7%). There was no significant difference in the number of detected bacterial taxa. However, Proteobacteria was significantly increased while Firmicutes and Actinobacteria were significantly decreased under consecutive monoculture. At the genus level, the relative abundances of genera Exiguobacterium, Bacillus and Arthrobacter, potentially beneficial microorganisms, were significantly higher in OY than that in TY and DP, but it was opposite for the genus Pseudomonas. The results from the culture-dependent approach and pathogenicity test showed that Pseudomonas plecoglossicida D9, widely isolated from the diseased leaves, was highly pathogenic to leaves. In conclusion, R. glutinosa monoculture resulted in distinct phyllosphere bacterial community variation with the accumulation of pathogen loads at the expense of beneficial microorganisms, which could contribute to the occurrence of leaf disease symptoms,and aggravate R. glutinosa replant disease in a monoculture regime.


Asunto(s)
Rehmannia , Bacterias , ADN Ribosómico , Raíces de Plantas , Pseudomonas
3.
Int J Mol Sci ; 19(8)2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110928

RESUMEN

Consecutive monoculture of Rehmannia glutinosa, highly valued in traditional Chinese medicine, leads to a severe decline in both quality and yield. Rhizosphere microbiome was reported to be closely associated with the soil health and plant performance. In this study, comparative metagenomics was applied to investigate the shifts in rhizosphere microbial structures and functional potentials under consecutive monoculture. The results showed R. glutinosa monoculture significantly decreased the relative abundances of Pseudomonadaceae and Burkholderiaceae, but significantly increased the relative abundances of Sphingomonadaceae and Streptomycetaceae. Moreover, the abundances of genera Pseudomonas, Azotobacter, Burkholderia, and Lysobacter, among others, were significantly lower in two-year monocultured soil than in one-year cultured soil. For potentially harmful/indicator microorganisms, the percentages of reads categorized to defense mechanisms (i.e., ATP-binding cassette (ABC) transporters, efflux transporter, antibiotic resistance) and biological metabolism (i.e., lipid transport and metabolism, secondary metabolites biosynthesis, transport and catabolism, nucleotide transport and metabolism, transcription) were significantly higher in two-year monocultured soil than in one-year cultured soil, but the opposite was true for potentially beneficial microorganisms, which might disrupt the equilibrium between beneficial and harmful microbes. Collectively, our results provide important insights into the shifts in genomic diversity and functional potentials of rhizosphere microbiome in response to R. glutinosa consecutive monoculture.


Asunto(s)
Bacterias , Metagenoma , Consorcios Microbianos/fisiología , Rehmannia/microbiología , Rizosfera , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo
4.
Phytopathology ; 108(12): 1493-1500, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29975158

RESUMEN

Consecutive monoculture of Rehmannia glutinosa in the same field leads to a severe decline in both quality and yield of tuberous roots, the most useful part in traditional Chinese medicine. Fungi are an important and diverse group of microorganisms in the soil ecosystem and play crucial roles in soil health. In this study, high-throughput pyrosequencing of internal transcribed spacer 2 ribosomal DNA amplicons was applied to gain insight into how consecutive monoculture practice influence and stimulate R. glutinosa rhizosphere and bulk soil fungal communities. The results from nonmetric multidimensional scaling ordination and clustering analysis revealed distinctive differences between rhizosphere and bulk soil fungal communities. However, longer-term monocultured bulk soils were more similar to the rhizosphere soils in comparison with the shorter-term monocultured bulk soils. Moreover, consecutive monoculture caused a gradual shift in the composition and structure of the soil fungal community. The cultivation of this plant led to the appearance of some exclusive operational taxonomic units in rhizosphere or bulk soils that were assigned to the genera Fusarium, Rhizoctonia, and so on. Furthermore, the sum of the relative abundance of species of Fusarium, Cylindrocarpon, and Gibberella (belonging to the family Nectriaceae); Rhizoctonia, Thanatephorus, and Ceratobasidium (belonging to the family Ceratobasidiaceae); and Lectera and Plectosporium (belonging to the family Plectosphaerellaceae) was significantly higher in consecutively monocultured (CM) than in newly planted (NP) soil in both rhizosphere and bulk soils. In particular, Fusarium abundance was significantly higher in CM than in NP in the rhizosphere, and higher in rhizosphere soils than in bulk soils for each treatment. A pathogenicity test showed that both Fusarium strains isolated were pathogenic to R. glutinosa seedlings. In addition, the culture filtrate and mycotoxins produced by Fusarium oxysporum significantly repressed the growth of the antagonistic bacterium, Pseudomonas aeruginosa. In conclusion, consecutive monoculture of R. glutinosa restructured the fungal communities in both rhizosphere and bulk soils but bulk effects developed more slowly over time in comparison with rhizosphere effects. Furthermore, microbial interactions might lead to a reduction in the abundance of beneficial microbes.


Asunto(s)
Micobioma , Enfermedades de las Plantas/microbiología , Rehmannia/microbiología , Agricultura , Rizosfera , Microbiología del Suelo
5.
Front Microbiol ; 8: 1748, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28966607

RESUMEN

Radix pseudostellariae is a perennial tonic medicinal plant, with high medicinal value. However, consecutive monoculture of this plant in the same field results in serious decrease in both yield and quality. In this study, a 3-year field experiment was performed to identify the inhibitory effect of growth caused by prolonged monoculture of R. pseudostellariae. DGGE analysis was used to explore the shifts in the structure and diversity of soil Fusarium and Pseudomonas communities along a 3-year gradient of monoculture. The results demonstrated that extended monoculture significantly boosted the diversity of Fusarium spp., but declined Pseudomonas spp. diversity. Quantitative PCR analysis showed a significant increase in Fusarium oxysporum, but a decline in Pseudomonas spp. Furthermore, abundance of antagonistic Pseudomonas spp. possessing antagonistic ability toward F. oxysporum significantly decreased in consecutively monocultured soils. Phenolic acid mixture at the same ratio as detected in soil could boost mycelial and sporular growth of pathogenic F. oxysporum while inhibit the growth of antagonistic Pseudomonas sp. CJ313. Moreover, plant bioassays showed that Pseudomonas sp. CJ313 had a good performance that protected R. pseudostellariae from infection by F. oxysporum. In conclusion, this study demonstrated that extended monoculture of R. pseudostellariae could alter the Fusarium and Pseudomonas communities in the plant rhizosphere, leading to relatively low level of antagonistic microorganisms, but with relatively high level of pathogenic microorganisms.

6.
BMC Plant Biol ; 17(1): 155, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28923015

RESUMEN

BACKGROUND: Pseudostellaria heterophylla (P. heterophylla), a herbaceous perennial, belongs to Caryophyllaceae family and is one of the Chinese herbal medicine with high pharmacodynamic value. It can be used to treat the spleen deficiency, anorexia, weakness after illness and spontaneous perspiration symptoms. Our previous study found that consecutive monoculture of Pseudostellaria heterophylla could lead to the deterioration of the rhizosphere microenvironment. The specialized forms of pathogenic fungus Fusarium oxysporum f.Sp. heterophylla (F. oxysporum) in rhizosphere soils of P. heterophylla plays an important role in the consecutive monoculture of P. heterophylla. RESULTS: In this study, F. oxysporum was used to infect the tissue culture plantlets of P. heterophylla to study the responding process at three different infection stages by using RNA-sequencing. We obtained 127,725 transcripts and 47,655 distinct unigenes by de novo assembly and obtained annotated information in details for 25,882 unigenes. The Kyoto Encyclopedia of Genes and Genomes pathway analysis and the real-time quantitative PCR results suggest that the calcium signal system and WRKY transcription factor in the plant-pathogen interaction pathway may play an important role in the response process, and all of the WRKY transcription factor genes were divided into three different types. Moreover, we also found that the stimulation of F. oxysporum may result in the accumulation of some phenolics in the plantlets and the programmed cell death of the plantlets. CONCLUSIONS: This study has partly revealed the possible molecular mechanism of the population explosion of F. oxysporum in rhizosphere soils and signal response process, which can be helpful in unraveling the role of F. oxysporum in consecutive monoculture problems of P. heterophylla.


Asunto(s)
Caryophyllaceae/genética , Caryophyllaceae/microbiología , Fusarium/fisiología , Enfermedades de las Plantas/genética , Señalización del Calcio , Perfilación de la Expresión Génica , Genes de Plantas , Anotación de Secuencia Molecular , Fenoles/metabolismo , Fenilpropionatos/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Rizosfera , Factores de Transcripción/metabolismo
7.
Front Plant Sci ; 8: 659, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28512464

RESUMEN

As potent allelochemicals, phenolic acids are believed to be associated with replanting disease and cause microflora shift and structural disorder in the rhizosphere soil of continuously monocultured Radix pseudostellariae. The transcriptome sequencing was used to reveal the mechanisms underlying the differential response of pathogenic bacterium Kosakonia sacchari and beneficial bacterium Bacillus pumilus on their interactions with phenolic acids, the main allelochemicals in root exudates of R. pseudostellariae in the monoculture system. The microbes were inoculated in the pots containing soil and the medicinal plant in this study. The results showed that the addition of beneficial B. pumilus to the 2-year planted soil significantly decreased the activity of soil urease, catalase, sucrase, and cellulase and increased the activity of chitinase compared with those in the 2nd-year monocropping rhizosphere soil without any treatment. However, opposite results were obtained when K. sacchari was added. Transcriptome analysis showed that vanillin enhanced glycolysis/gluconeogenesis, fatty acid biosynthesis, pentose phosphate, bacterial chemotaxis, flagellar assembly, and phosphotransferase system pathway in K. sacchari. However, protocatechuic acid, a metabolite produced by K. sacchari from vanillin, had negative effects on the citrate cycle and biosynthesis of novobiocin, phenylalanine, tyrosine, and tryptophan in B. pumilus. Concurrently, the protocatechuic acid decreased the biofilm formation of B. pumilus. These results unveiled the mechanisms how phenolic acids differentially mediate the shifts of microbial flora in rhizosphere soil, leading to the proliferation of pathogenic bacteria (i.e., K. sacchari) and the attenuation of beneficial bacteria (i.e., B. pumilus) under the monocropping system of R. pseudostellariae.

8.
PLoS One ; 10(6): e0129397, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26098851

RESUMEN

Soil microbes are active players in energy flow and material exchange of the forest ecosystems, but the research on the relationship between the microbial diversity and the vegetation types is less conducted, especially in the subtropical area of China. In this present study, the rhizosphere soils of evergreen broad-leaf forest (EBF), coniferous forest (CF), subalpine dwarf forest (SDF) and alpine meadow (AM) were chosen as test sites. Terminal-restriction fragment length polymorphisms (T-RFLP) analysis was used to detect the composition and diversity of soil bacterial communities under different vegetation types in the National Natural Reserve of Wuyi Mountains. Our results revealed distinct differences in soil microbial composition under different vegetation types. Total 73 microbes were identified in soil samples of the four vegetation types, and 56, 49, 46 and 36 clones were obtained from the soils of EBF, CF, SDF and AM, respectively, and subsequently sequenced. The Actinobacteria, Fusobacterium, Bacteroidetes and Proteobacteria were the most predominant in all soil samples. The order of Shannon-Wiener index (H) of all soil samples was in the order of EBF>CF>SDF>AM, whereas bacterial species richness as estimated by four restriction enzymes indicated no significant difference. Principal component analysis (PCA) revealed that the soil bacterial communities' structures of EBF, CF, SDF and AM were clearly separated along the first and second principal components, which explained 62.17% and 31.58% of the total variance, respectively. The soil physical-chemical properties such as total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) and total potassium (TK) were positively correlated with the diversity of bacterial communities.


Asunto(s)
Bosques , Pradera , Microbiota/genética , Polimorfismo de Longitud del Fragmento de Restricción , Microbiología del Suelo , Carbono/análisis , Nitrógeno/análisis , Fósforo/análisis , Potasio/análisis , Suelo/química , Clima Tropical
9.
Ying Yong Sheng Tai Xue Bao ; 24(8): 2301-9, 2013 Aug.
Artículo en Chino | MEDLINE | ID: mdl-24380352

RESUMEN

By using Biolog Ecoplate system, this paper studied the structure and functional diversity of soil microbial community under different vegetation types in Wuyishan National Nature Reserve, aimed to probe into the effects of vegetation type on the diversity of soil microbial community. The results showed that the soil chemical properties, soil enzyme activities, and average well color development (AWCD) were higher in natural forest than in planted forest, and were the lowest in abandoned field. The AWCD reflecting soil microbial activity and functional diversity was increased with increasing incubation time, but there existed significant differences among different vegetation types. The carbon sources mostly used by soil microbes were carbohydrates and carboxylic acids, followed by amino acids, phenolic acids and polymers, and amines had the lowest utilization rate. The Simpson index, Shannon index, Richness index and McIntosh index in natural forest were holistically higher than those in planted forest. Principal component analysis (PCA) identified 2 principal component factors in relation to carbon sources, explaining 56.3% and 30.2% of the variation, respectively. The carbon sources used by soil microbial community differed with vegetation types. Amino acids and amides were the two main carbon sources separating the 2 principal component factors. The results of this study could provide basis for further approaching the relationships between vegetation diversity and soil microbial community diversity.


Asunto(s)
Bosques , Microbiología del Suelo , Árboles/clasificación , Biodiversidad , China , Conservación de los Recursos Naturales , Consorcios Microbianos , Árboles/crecimiento & desarrollo
10.
Zhongguo Zhong Yao Za Zhi ; 36(8): 984-7, 2011 Apr.
Artículo en Chino | MEDLINE | ID: mdl-21809567

RESUMEN

OBJECTIVE: To establish an efficient and high resolution 2-DE (two-dimensional electrophoresis) protocol for root tuber proteome analysis of Rehmannia glutinosa. METHOD: Proteins from root tuber of R. glutinosa were extracted by using five different methods and their productivity and profiles were assessed by means of SDS-PAGE and two-dimensional electrophoresis. RESULT: The trichloroacetic acid (TCA)-phenol extraction method was found most effective for the extraction with the highest protein yield, the most spots in protein patterns, and the highest resolution of proteins, and the clearest background could be achieved simultaneously. A 1:5 solution of ampholine pH 3-10 and pH 5-8 for a nonlinear gel and the 170 microg of protein loading dosage obtained maps with more protein spots and higher resolution of separation patterns. CONCLUSION: This study based on the optimized root tuber proteome preparation and the 2-DE protocol gets a high resolution and reproducibility 2-DE image, which will be expected to have excellent applications in proteomics studies of R. glutinosa tuber root.


Asunto(s)
Electroforesis en Gel Bidimensional/métodos , Proteínas de Plantas/análisis , Raíces de Plantas/química , Proteoma/química , Proteoma/aislamiento & purificación , Rehmannia/química , Proteínas de Plantas/química
11.
PLoS One ; 6(5): e20611, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21655235

RESUMEN

BACKGROUND: The consecutive monoculture for most of medicinal plants, such as Rehmannia glutinosa, results in a significant reduction in the yield and quality. There is an urgent need to study for the sustainable development of Chinese herbaceous medicine. METHODOLOGY/PRINCIPAL FINDINGS: Comparative metaproteomics of rhizosphere soil was developed and used to analyze the underlying mechanism of the consecutive monoculture problems of R. glutinosa. The 2D-gel patterns of protein spots for the soil samples showed a strong matrix dependency. Among the spots, 103 spots with high resolution and repeatability were randomly selected and successfully identified by MALDI TOF-TOF MS for a rhizosphere soil metaproteomic profile analysis. These proteins originating from plants and microorganisms play important roles in nutrient cycles and energy flow in rhizospheric soil ecosystem. They function in protein, nucleotide and secondary metabolisms, signal transduction and resistance. Comparative metaproteomics analysis revealed 33 differentially expressed protein spots in rhizosphere soil in response to increasing years of monoculture. Among them, plant proteins related to carbon and nitrogen metabolism and stress response, were mostly up-regulated except a down-regulated protein (glutathione S-transferase) involving detoxification. The phenylalanine ammonia-lyase was believed to participate in the phenylpropanoid metabolism as shown with a considerable increase in total phenolic acid content with increasing years of monoculture. Microbial proteins related to protein metabolism and cell wall biosynthesis, were up-regulated except a down-regulated protein (geranylgeranyl pyrophosphate synthase) functioning in diterpenoid synthesis. The results suggest that the consecutive monoculture of R. glutinosa changes the soil microbial ecology due to the exudates accumulation, as a result, the nutrient cycles are affected, leading to the retardation of plant growth and development. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated the interactions among plant, soil and microflora in the proteomic level are crucial for the productivity and quality of R. glutinosa in consecutive monoculture system.


Asunto(s)
Proteómica/métodos , Rehmannia/metabolismo , Rizosfera , Suelo/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA