Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Neurobiol ; 44(1): 36, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637346

RESUMEN

Surgical brain injury (SBI), induced by neurosurgical procedures or instruments, has not attracted adequate attention. The pathophysiological process of SBI remains sparse compared to that of other central nervous system diseases thus far. Therefore, novel and effective therapies for SBI are urgently needed. In this study, we found that neutrophil extracellular traps (NETs) were present in the circulation and brain tissues of rats after SBI, which promoted neuroinflammation, cerebral edema, neuronal cell death, and aggravated neurological dysfunction. Inhibition of NETs formation by peptidylarginine deiminase (PAD) inhibitor or disruption of NETs with deoxyribonuclease I (DNase I) attenuated SBI-induced damages and improved the recovery of neurological function. We show that SBI triggered the activation of cyclic guanosine monophosphate-adenosine monophosphate synthase stimulator of interferon genes (cGAS-STING), and that inhibition of the cGAS-STING pathway could be beneficial. It is worth noting that DNase I markedly suppressed the activation of cGAS-STING, which was reversed by the cGAS product cyclic guanosine monophosphate-adenosine monophosphate (cGMP-AMP, cGAMP). Furthermore, the neuroprotective effect of DNase I in SBI was also abolished by cGAMP. NETs may participate in the pathophysiological regulation of SBI by acting through the cGAS-STING pathway. We also found that high-dose vitamin C administration could effectively inhibit the formation of NETs post-SBI. Thus, targeting NETs may provide a novel therapeutic strategy for SBI treatment, and high-dose vitamin C intervention may be a promising translational therapy with an excellent safety profile and low cost.


Asunto(s)
Lesiones Encefálicas , Trampas Extracelulares , Animales , Ratas , Encéfalo , Lesiones Encefálicas/tratamiento farmacológico , Ácido Ascórbico , Desoxirribonucleasa I/farmacología
2.
Int J Biol Macromol ; 262(Pt 2): 130172, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360230

RESUMEN

Plant essential oils possess broad-spectral antimicrobial property, but the applications are impeded by their insolubility in water, extreme volatility, and strong irritation. Nanoparticle-stabilized emulsion (Pickering emulsion) gels are colloidal systems with ability to accommodate two immiscible phases in one system. The thick adsorption nanoparticle layers and the cross-linked networks in continuous phase could provide protective barriers for antibacterial oil and achieve on-demand controlled release. An emulsion hydrogel templated from gelatin nanoparticle-stabilized emulsion is one-pot constructed by conducting a tunable cross-linking process between oxidized dextran (Odex) and amikacin in the continuous phase and concomitantly trapping tea tree essential oil (TO) droplets in the three-dimensional network. The resulted emulsion hydrogel presents tunable gelation time, adequate mechanical strength, fascinating injectability, and self-healing capability. It is pH-responsiveness and presents controlled release of amikacin and TO, exhibiting a long-term bacteriostasis of 144 h. The emulsion hydrogel facilitates the outstanding wound healing efficiency in 14 days (95.2 ± 0.8 % of wound closure), accompanied with enhanced collagen deposition and angiogenic activities. The incorporation of TO into emulsion hydrogel system reduced its irritation and improved its biosafety, showing potential application in bacteria inhibition even as implants in vivo.


Asunto(s)
Amicacina , Nanopartículas , Amicacina/farmacología , Gelatina , Dextranos , Hidrogeles , Emulsiones , Preparaciones de Acción Retardada/farmacología , Liberación de Fármacos , Antibacterianos/farmacología , Cicatrización de Heridas
3.
J Control Release ; 367: 1-12, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244844

RESUMEN

Immunogenic cell death (ICD) is associated with the release of damage-associated molecular patterns, including ATP, to promote an effective immune cycle against tumors. However, tumors have evolved an effective strategy for degrading extracellular immunostimulatory ATP via the ATP-adenosine axis, allowing the sequential action of the ectonucleotidases CD39 to degrade accumulated immunostimulatory ATP into pleiotropic immunosuppressive adenosine. Here, an ingenious dissolving microneedle patch (DMNs) is designed for the intralesional delivery of CD39 inhibitor (sodium polyoxotungstate, POM-1) and ICD inducer (IR780) co-encapsulated solid lipid nanoparticles (P/I SLNs) for antitumor therapy. Upon insertion into the tumor site, IR780 induces ICD modalities with the release of damage-associated molecular patterns from endogenous tissues, which activates the antitumor immune cycle. Simultaneously, POM-1 promotes the liberation of immunostimulatory ATP and lowers the level of immunosuppressive extracellular adenosine, which supported immune control of tumors via recruiting CD39-expressing immune cells. In vivo antitumor studies prove that this platform can effectively eliminate mice melanoma (tumor growth inhibitory rate of 96.5%) and colorectal adenocarcinoma (tumor growth inhibitory rate of 93.5%). Our results shed light on the immunological aspects of combinatorial phototherapy and ATP-adenosine regulation, which will broaden the scope of synergistic antitumor immunotherapy.


Asunto(s)
Adenosina , Neoplasias , Animales , Ratones , Fototerapia/métodos , Neoplasias/terapia , Adenosina Trifosfato/metabolismo , Inmunoterapia , Línea Celular Tumoral
4.
Front Microbiol ; 14: 1295058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033563

RESUMEN

Many studies have focused on the influence of dietary supplements on gut microbiota composition, but limited research have reported their effects on specific bacterial species in the gut. Lactiplantibacillus plantarum is one of the most widely studied probiotics, with a wide range of sources and good environmental adaptability. In this study, in order to elucidate the adaptation strategies of L. plantarum to the gut of mice supplemented with carbohydrates, peptides and minerals, whole genome resequencing and intracellular metabolites detection were performed, and high-frequency mutant genes and differential metabolites were screened. The results suggested different types of dietary supplements do have different effects on L. plantarum from the gut of mice. Additionally, KEGG annotation unveiled that the effects of these dietary supplements on the gene level of L. plantarum primarily pertained to environmental information processing, while the differential metabolites were predominantly associated with metabolism. This study provided new perspectives on the adaptive mechanism of L. plantarum in response to the host's gut environment, suggesting that the diversity of the genome and metabolome of L. plantarum was correlated with dietary supplements. Furthermore, this study offered useful guidance in the effective utilization of dietary supplements.

5.
Cancer Lett ; 525: 33-45, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34728310

RESUMEN

Long noncoding RNAs (lncRNAs) have been shown to be closely related to cancer progression and therapy. However, the clinical significance of lncRNAs and the mechanisms by which they function in glioma are largely unknown. In this study, using online data sets combined with collected clinical glioma tissues, we determined that the lncRNA KB-1460A1.5 is downregulated and positively correlated with prognosis in glioma. Functional experiments showed that overexpression of KB-1460A1.5 inhibits glioma cell proliferation, migration and invasion in vitro and in vivo, while downregulation of KB-1460A1.5 has the opposite effects. Mechanistically, tandem mass tag (TMT)-based quantitative proteomic analysis revealed that KB-1460A1.5 preferentially affects the Akt/TSC1/mTOR pathway. KB-1460A1.5 was found to function as a competing endogenous RNA (ceRNA) to regulate the expression of TSC1, a key regulatory component of the mTOR pathway, by sponging miR-130a-3p in glioma cells. Furthermore, our data demonstrate that the mTOR pathway regulates the expression of the transcription factor Yin Yang 1 (YY1), which in turn binds directly to the KB-1460A1.5 promoter and affects the expression of KB-1460A1.5. Untargeted metabolomics and quantitative real-time PCR (qRT-PCR) analysis further confirmed the effects of KB-1460A1.5 on amino acid metabolism. In conclusion, this study revealed that lncRNA KB-1460A1.5 inhibits glioma tumorigenesis via miR-130a-3p/TSC1/mTOR/YY1 feedback loop.


Asunto(s)
Glioma/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Factor de Transcripción YY1/genética , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioma/metabolismo , Glioma/patología , Humanos , Metabolómica , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/genética
6.
AAPS PharmSciTech ; 20(2): 85, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30673901

RESUMEN

Non-cystic fibrosis bronchiectasis (NCFB) is a chronic respiratory disease associated with the high morbidity and mortality. Long-term intermittent therapy by inhalable antibiotics has recently emerged as an effective approach for NCFB treatment. However, the effective delivery of antibiotics to the lung requires administering a high dose to the site of infection. Herein, we investigated the novel inhalable silk-based microparticles as a promising approach to deliver high-payload ciprofloxacin (CIP) for NCFB therapy. Silk fibroin (SF) was applied to improve drug-payload and deposit efficiency of the dry powder particles. Mannitol was added as a mucokinetic agent. The dry powder inhaler (DPI) formulations of CIP microparticles were evaluated in vitro in terms of the aerodynamic performance, particle size distribution, drug loading, morphology, and their solid state. The optimal formulation (highest drug loading, 80%) exhibited superior aerosolization performance in terms of fine particle fraction (45.04 ± 0.84%), emitted dose (98.10 ± 1.27%), mass median aerodynamic diameter (3.75 ± 0.03 µm), and geometric standard deviation (1.66 ± 0.10). The improved drug loading was due to the electrostatic interactions between the SF and CIP by adsorption, and the superior aerosolization efficiency would be largely attributed to the fluffy and porous cotton-like property and low-density structure of SF. The presented results indicated the novel inhalable silk-based DPI microparticles of CIP could provide a promising strategy for the treatment of NCFB.


Asunto(s)
Antibacterianos/administración & dosificación , Bronquiectasia/tratamiento farmacológico , Ciprofloxacina/administración & dosificación , Administración por Inhalación , Aerosoles , Inhaladores de Polvo Seco , Fibroínas , Humanos , Manitol/química , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA