Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 21733, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066026

RESUMEN

Based on geographical distribution, cultivated Chinese Angelica dahurica has been divided into Angelica dahurica cv. 'Hangbaizhi' (HBZ) and Angelica dahurica cv. 'Qibaizhi' (QBZ). Long-term geographical isolation has led to significant quality differences between them. The secretory structure in medicinal plants, as a place for accumulating effective constituents and information transmission to the environment, links the environment with the quality of medicinal materials. However, the secretory tract differences between HBZ and QBZ has not been revealed. This study aimed to explore the relationship between the secretory tract and the quality of two kinds of A. dahurica. Root samples were collected at seven development phases. High-Performance Liquid Chromatography (HPLC) and Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI) were used for the content determination and spatial location of coumarins. Paraffin section was used to observe and localize the root secretory tract. Origin, CaseViewer, and HDI software were used for data analysis and image processing. The results showed that compared to QBZ, HBZ, with better quality, has a larger area of root secretory tracts. Hence, the root secretory tract can be included in the quality evaluation indicators of A. dahurica. Additionally, DESI-MSI technology was used for the first time to elucidate the temporal and spatial distribution of coumarin components in A. dahurica root tissues. This study provides a theoretical basis for the quality evaluation and breeding of improved varieties of A. dahurica and references the DESI-MSI technology used to analyze the metabolic differences of various compounds, including coumarin and volatile oil, in different tissue parts of A. dahurica.


Asunto(s)
Angelica , Aceites Volátiles , Plantas Medicinales , Angelica/química , Fitomejoramiento , Cumarinas/química , Cromatografía Líquida de Alta Presión/métodos
2.
Sci Rep ; 13(1): 6022, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055447

RESUMEN

Angelica dahurica (Angelica dahurica Fisch. ex Hoffm.) is widely used as a traditional Chinese medicine and the secondary metabolites have significant pharmacological activities. Drying has been shown to be a key factor affecting the coumarin content of Angelica dahurica. However, the underlying mechanism of metabolism is unclear. This study sought to determine the key differential metabolites and metabolic pathways related to this phenomenon. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) based targeted metabolomics analysis was performed on Angelica dahurica that were freeze-drying (- 80 °C/9 h) and oven-drying (60 °C/10 h). Furthermore, the common metabolic pathways of paired comparison groups were performed based on KEEG enrichment analysis. The results showed that 193 metabolites were identified as key differential metabolites, most of which were upregulated under oven drying. It also displayed that many significant contents of PAL pathways were changed. This study revealed the large-scale recombination events of metabolites in Angelica dahurica. First, we identified additional active secondary metabolites apart from coumarins, and volatile oil were significantly accumulated in Angelica dahurica. We further explored the specific metabolite changes and mechanism of the phenomenon of coumarin upregulation caused by temperature rise. These results provide a theoretical reference for future research on the composition and processing method of Angelica dahurica.


Asunto(s)
Angelica , Medicamentos Herbarios Chinos , Cromatografía Liquida , Angelica/química , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos/química , Desecación
3.
J Pharm Biomed Anal ; 227: 115277, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36736110

RESUMEN

The quality of traditional Chinese medicine (TCM) guarantees its clinical efficacy. Although advanced analytical techniques and methods can accurately determine the content of chemical components in TCM, it is difficult to accurately determine its clinical efficacy. In addition, the current analytical methods and technologies are complex and have difficulty meeting the requirements of a rapid, accurate and convenient determination of TCM quality. In this study, we first propose the concept of "indistinct" evaluation of the quality of TCM, that is, combining biological potency with character evaluation, quantifying the character evaluation, and preparing the safflower quality grade evaluation card based on the character analysis, which provides research ideas and methods for the rapid and accurate evaluation of the quality of TCM. We determined the biological potency of different batches of safflower based on the in vitro antiplatelet aggregation model and divided the safflower samples into two grades based on the biological potency. We further collected the color information of different grades of safflower samples, quantified the color information of different grades of safflower, drew a quality grade evaluation card for the rapid judgment of safflower quality grade and verified its accuracy by pharmacodynamic evaluation. To further analyze the differences in the material basis of different grades of safflower, the LC-MS method was used to simultaneously determine the contents of 19 chemical components, such as myricetin, in different grades of safflower samples to analyze the differences in the material basis of different grades of safflower. The result shows that the different grades of safflower exhibited significant differences in color. The pharmacodynamic results show that the quality evaluation card prepared based on color information can accurately evaluate quality, and the effect of first-class safflower is significantly better than that of second-class safflower. The chemical analysis results of different grades of safflower show that there are also significant differences between them, among which hypericin, 6-hydroxyapin-6-O-glucose-7-O-glucuronide, 6-hydroxykaempferol-3,6-O-diglucoside-7-O-glucuronic acid glycoside, 6-hydroxykaempferol-3,6,7-tri-O-glucoside and hydroxysafflower yellow A exhibit significant differences, which may be the main differentiating components of different grades of safflower. This study preliminarily confirmed that the "indistinct" evaluation of the quality of TCM based on character analysis is accurate and scientific, and the quality evaluation card prepared can accurately judge the quality of TCM, providing a reference for the rapid application of TCM character evaluation.


Asunto(s)
Carthamus tinctorius , Medicamentos Herbarios Chinos , Medicina Tradicional China , Carthamus tinctorius/química , Medicina de Precisión , Medicamentos Herbarios Chinos/química , Cromatografía Liquida
4.
Biotechnol Appl Biochem ; 70(2): 509-517, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35695381

RESUMEN

The flower of the safflower (Carthamus tinctorius L.) is a traditional Chinese medicine that can improve cerebral blood flow due to its enrichment in flavonoids. Light is one of the main environmental factors that affects safflower growth and flavonoid synthesis. Elongated hypocotyl 5 (HY5) plays an important role in plants' light signal transduction. However, no study of HY5 in safflower has been conducted. In this study, a 462-bp sequence of CtHY5 was successfully cloned. The expression pattern of CtHY5 in different safflower tissues and the expression patterns of CtHY5 and CtCHS1 in full-blooming flowers that were treated under different light intensities were studied. The subcellular localization and the overexpression of CtHY5 were carried out as well. CtHY5 has a DNA-binding region belonging to the basic leucine zipper transcription factor family. CtHY5 was specifically expressed in flowers. The expression level of CtHY5 first increased and then decreased with increasing light intensity, which was similar to the expression pattern of CtCHS1. The subcellular localization study was implemented in safflower protoplasts and the YFP fluorescence was observed in nucleus. The overexpression analysis initially verified the promotion effect of CtHY5 to the expression of CtCHS1 and the content of flavonoids.


Asunto(s)
Carthamus tinctorius , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Hipocótilo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Flavonoides/farmacología , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Luz
5.
J Sep Sci ; 46(2): e202200433, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36373183

RESUMEN

Quality consistency of Glycyrrhiza formula granules is essential for guaranteeing clinical efficacy. However, a suitable method to accurately and conveniently evaluate the consistency of the clinical efficacy of Glycyrrhiza formula granules is currently not available. This study established a method for the simultaneous determination of 12 active components in Glycyrrhiza formula granules using ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry. The rate of inhibition of cyclooxygenase-2 by different batches of Glycyrrhiza formula granules was determined. Near-infrared spectra were collected for different batches of Glycyrrhiza formula granules to detect their biological activity in the inhibition of cyclooxygenase-2. The quality consistency of the 11 batches of Glycyrrhiza formula granules was evaluated using principal component and correlation analyses. The results showed significant differences in the formula granules of Glycyrrhiza uralensis produced by the different manufacturers. Some differences were also observed among batches of formula granules produced by the same manufacturer. Correlation analysis of the chemical components and cyclooxygenase-2 activity showed that glycyrrhizic acid, liquiritin, and isoliquiritin were the main active components of Glycyrrhiza. Correlation analysis of the near-infrared spectra and cyclooxygenase-2 inhibition activity showed a high correlation between the active components and three characteristic bands: 3383-3995, 4227-4651, and 5315-5878 cm-1 . In this study, the main active anti-inflammatory components of Glycyrrhiza granules were screened. Thus, the near-infrared spectrum and characteristic active band of multi-index active components can be used to quickly detect the quality consistency of Glycyrrhiza formula granules, thereby improving the ability to control the quality and consistency of these granules.


Asunto(s)
Medicamentos Herbarios Chinos , Glycyrrhiza uralensis , Glycyrrhiza , Medicamentos Herbarios Chinos/análisis , Ciclooxigenasa 2 , Glycyrrhiza/química , Glycyrrhiza uralensis/química , Ácido Glicirrínico/análisis , Cromatografía Líquida de Alta Presión/métodos
6.
Phytomedicine ; 108: 154463, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36347177

RESUMEN

BACKGROUND: Cardiovascular disease is one of the most concerning chronic diseases in the world. Many studies have shown that platelet overactivation is a very important factor in the occurrence and development of cardiovascular diseases. At present, the widely used antiplatelet drugs have some defects, such as drug resistance and adverse reactions. PURPOSE: The purpose of this article is to summarize the main mechanisms and pathways of platelet activation, the main targets of antiplatelet aggregation, and the antiplatelet aggregation components of natural drugs and their mechanisms of action to provide new research ideas for the development and application of antiplatelet drugs. STUDY DESIGN AND METHODS: In this review, we systematically searched the PubMed, Google Scholar, Web of Science, and CNKI databases and selected studies based on predefined eligibility criteria. We then assessed their quality and extracted data. RESULTS: ADP, AA, THR, AF, collagen, SDF-1α, and Ca2+ can induce platelet aggregation and trigger thrombosis. Natural drugs have a good inhibitory effect on platelet activation. More than 50 kinds of natural drugs and over 120 kinds of chemical compounds, including flavonoids, alkaloids, saponins, terpenoids, coumarins, and organic acids, have significantly inhibited platelet activation activity. The MAPK pathway, cGMP-PKG pathway, cAMP-PKA pathway, PI3K-AKT pathway, PTK pathway, PLC pathway, and AA pathway are the main mechanisms and pathways of platelet activation. CONCLUSION: Natural drugs and their active ingredients have shown good activity and application prospects in anti-platelet aggregation. We hope that this review provides new research ideas for the development and application of antiplatelet drugs.


Asunto(s)
Enfermedades Cardiovasculares , Inhibidores de Agregación Plaquetaria , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Activación Plaquetaria , Agregación Plaquetaria , Plaquetas , Enfermedades Cardiovasculares/metabolismo
7.
Comput Biol Med ; 149: 106001, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36055159

RESUMEN

Insomnia is a very common disease worldwide. It seriously affects the quality of human life and even endangers health. Traditional Chinese medicine (TCM) has unique advantages in the intervention and treatment of insomnia. However, its underlying mechanism has yet to be elucidated. This study was performed to explore the potential biomarkers and mechanisms of insomnia, and treatment TCM and classical prescriptions. The gene microarray data of insomnia is downloaded and preprocessed. Differentially expressed genes (DEGs) and GO and KEGG enrichment analyses were performed. The protein-protein interaction network (PPI) was constructed. Small molecule drugs for curing insomnia were identified using cMap and CTD databases. We searched the TCM corresponding to small molecule drugs and the classic prescriptions corresponding to TCM by the TCMSP database. We constructed a network of "ingredient-TCM-classic prescriptions". The molecular docking was performed to validate the screening results. We obtained a total of 124 DEGs, including 78 up-regulated genes, 46 down-regulated genes, 10 Hub genes and 3 key modules. A total of 125 significant GO entries and 15 significant KEGG were enriched (P < 0.05). The main biological processes involve neuronal apoptosis, autophagy, cell growth and apoptosis, etc. These signaling pathways may be involved in molecular regulatory mechanisms of insomnia, such as autophagy regulation, Alzheimer's disease, pathways to neurodegenerative diseases and neurotrophic factor signaling pathways. We identified 10 traditional Chinese medicines and 2 classical prescriptions of potential value. In addition, the molecular docking results indicated that small molecule ligands were nicely bound to the Hub gene, and the binding affinity ranged from -7.6 to -9.7 kcal/mol. This study provides a foundation for the clinical treatment of insomnia, explains the molecular mechanisms, and efficiently develops TCM and classical prescriptions.


Asunto(s)
Biología Computacional , Trastornos del Inicio y del Mantenimiento del Sueño , Biomarcadores , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Factores de Crecimiento Nervioso , Prescripciones , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/genética
8.
Curr Pharm Des ; 28(31): 2569-2582, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36043710

RESUMEN

Cardiovascular disease (CVD) has become a severe threat to human beings with increasing morbidity and mortality. Isorhamnetin (Iso) shows multiple bioactivities, especially in the cardiovascular system. A literature retrieval strategy was conducted in databases of PubMed, GeenMedical, Sci-Hub, Web of Science, China National Knowledge Infrastructure (CNKI), and Baidu Scholar, with keywords defined as: "Isorhamnetin", "cardiovascular diseases", "pharmacological effects", "phytochemistry", "pharmacokinetics", "clinical application" and "toxicity". The language is restricted to Chinese and English, and publish date ranges from January, 2011 to September, 2021. So far, Iso has been isolated and identified from several natural medicines, including Hippophae rhamnoides L., Ginkgo biloba L. and Typha angustifolia L., etc. The effects of Iso on CVD are pharmacological, including anti-atherosclerosis, reducing blood fat, anti-inflammation, antioxidation, endothelial protection, antithrombosis, antiplatelet aggregation, myocardial protection, and anti-hypertension. Iso could inhibit the activities of CYPs in liver microsomes and suppress hepatocyte injury in vitro. However, no toxicity was observed in vivo. Taken together, Iso has a wide range of positive effects on CVD with safe and multiple pharmacological activities on the cardiovascular system and may be an ideal candidate drug for the prevention and treatment of CVD. Therefore, further studies, especially on its clinic use, need to be conducted. The present review summarizes the recent progress in phytochemistry, pharmacology, and mechanisms of action and provides a reference for future studies on Iso.


Asunto(s)
Productos Biológicos , Enfermedades Cardiovasculares , Humanos , Etnofarmacología , Fitoterapia , Medicina Tradicional China , Fitoquímicos/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico
9.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1262-1272, 2022 Mar.
Artículo en Chino | MEDLINE | ID: mdl-35343153

RESUMEN

In this study, we employed Q Exactive to determine the main differential metabolites of Magnoliae Officinalis Cortex du-ring the "sweating" process. Further, we quantified the color parameters and determined the activities of polyphenol oxidase(PPO), peroxidase(POD), and tyrosinase of Magnoliae Officinalis Cortex during the "sweating" process. Gray correlation analysis was performed for the color, chemical composition, and enzyme activity to reveal the effect of enzymatic reaction on the color of Magnoliae Officinalis Cortex during the "sweating" process. Magnoliae Officinalis Cortex sweating in different manners showed similar metabolite changes. The primary metabolites that changed significantly included amino acids, nucleotides, and sugars, and the secondary metabolites with significant changes were phenols and phenylpropanoids. Despite the different sweating methods, eleven compounds were commonly up-regulated, including L-glutamic acid, acetylarginine, hypoxanthine, and xanthine; six compounds were commonly down-re-gulated, including L-arginine, L-aspartic acid, and phenylalanine. The brightness value(L~*), red-green value(a~*), and yellow-blue value(b~*) of Magnoliae Officinalis Cortex kept decreasing during the "sweating" process. The changes in the activities of PPO and POD during sweating were consistent with those in the color parameter values. The gray correlation analysis demonstrated that the main differential metabolites such as amino acids and phenols were closely related to the color parameters L~*, a~* and b~*; POD was correlated with amino acids and phenols; PPO had strong correlation with phenols. The results indicated that the color change of Magnoliae Officinalis Cortex during "sweating" was closely related to the reactions of enzymes dominated by PPO and POD. The study analyzed the correlations among the main differential metabolites, color parameters, and enzyme activities of Magnoliae Officinalis Cortex in the "sweating" process. It reveals the common law of material changes and ascertains the relationship between color changes and enzymatic reactions of Magnoliae Officinalis Cortex during "sweating". Therefore, this study provides a reference for studying the "sweating" mechanism of Magnoliae Officinalis Cortex and is of great significance to guarantee the quality of Magnoliae Officinalis Cortex.


Asunto(s)
Magnolia , Magnolia/química , Control de Calidad , Sudoración
10.
Eur J Pharmacol ; 920: 174811, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35182546

RESUMEN

5(S)-5-carboxystrictosidine (5-CS) is a compound found in Mappianthus iodoides Hand.-Mazz., root, a traditional Chinese medicine used for the treatment of coronary artery disease. In this study, we investigated whether 5-CS protects heart against I/R injury. Sprague-Dawley rats were treated with 5-CS intraperitoneally for 7 days before the experiment. Hearts were perfused for 20 min global ischemia and 180 min reperfusion. 5-CS significantly inhibited an increase in the post-ischemic left ventricular end-diastolic pressure (LVEDP) and improved the post-ischemic left ventricular developed pressure (LVDP), dP/dt maximum and dP/dt minimum rates of pressure change, and coronary flow as compared with sham group. Pretreatment with 5-hydroxydecanoic acid (5-HD), an inhibitor of mitochondrial KATP channel, for 10 min before ischemia attenuated the improvement of LVEDP, LVDP, dP/dt maximum and dP/dt minimum rates of pressure change, and coronary flow induced by 5-CS. 5-CS markedly decreased the infarct size and attenuated the increased lactate dehydrogenase (LDH) level in effluent during reperfusion. Pretreatment with 5-HD also blocked these protective effects of 5-CS. 5-CS increased Mn-SOD, catalase, and HO-1 levels decreased by I/R injury and pretreatment of 5-HD blocked the 5-CS effects. Increases in Bax, cleaved caspase-3 and cytochrome c levels, caspase-3 and caspase-9 activity, and decrease in Bcl-2 level by I/R injury were attenuated by 5-CS treatment and pretreatment of 5-HD blocked its effects. These results suggest that the protective effects of 5-CS against myocardial I/R injury may be partly related to activating antioxidant enzymes and suppressing apoptosis through opening mitochondrial KATP channels.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Canales KATP , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Canales de Potasio , Ratas , Ratas Sprague-Dawley
11.
Front Plant Sci ; 12: 712038, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381487

RESUMEN

Safflower is widely used in dying and in traditional medicine, and C-glucosylquinochalcones are the main metabolic species in the red color of safflower. Various safflower cultivars have flowers with different colors. However, the metabolic and transcriptional differences among safflower cultivars with different-colored flowers and the genes participating in C-glucosylquinochalcone biosynthesis are largely unknown. To provide insights on this issue, we performed integrated metabolomics and transcriptome analyses on the flavonoid biosynthesis of flowers of different colors in safflower (white-W, yellow-Y, light red-LR, and deep red-DR). The metabolic analysis showed that flavonoid metabolites showed great differences among the different colors of safflower. More flavonoid metabolic species were detected in Y and W, while C-glucosylquinochalcones were not detected in W. The content of C-glucosylquinochalcones increased with increasing color. Transcriptional analysis showed that most of the annotated flavonoid biosynthesis genes were significantly increased in W. The expression of genes related to flavonoid biosynthesis decreased with increasing color. We analyzed the candidate genes associated with C-glucosylquinochalcones, and an integration of the metabolic and transcriptional analyses indicated that the differential expression of the chalcone synthase (CHS) gene is one of the main reasons for the difference in flavonoid species and content among the different colors of safflower. Combined with the expression pattern analysis, these results indicated that HH_035319, HH_032689, and HH_018025 are likely involved in C-glucosylquinochalcones biosynthesis. In addition, we found that their expression showed greatly increased after the methyl jasmonate (MeJA) treatment. Therefore, HH_035319, HH_032689, and HH_018025 might participate in C-glucosylquinochalcone biosynthesis, which ultimately leads to the red color in safflower.

12.
J Mol Cell Cardiol ; 160: 97-110, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34216608

RESUMEN

Angiotensin II (Ang II) presents a critical mediator in various pathological conditions such as non-genetic cardiomyopathy. Osmotic pump infusion in rodents is a commonly used approach to model cardiomyopathy associated with Ang II. However, profound differences in electrophysiology and pharmacokinetics between rodent and human cardiomyocytes may limit predictability of animal-based experiments. This study investigates the application of an Organ-on-a-chip (OOC) system in modeling Ang II-induced progressive cardiomyopathy. The disease model is constructed to recapitulate myocardial response to Ang II in a temporal manner. The long-term tissue cultivation and non-invasive functional readouts enable monitoring of both acute and chronic cardiac responses to Ang II stimulation. Along with mapping of cytokine secretion and proteomic profiles, this model presents an opportunity to quantitatively measure the dynamic pathological changes that could not be otherwise identified in animals. Further, we present this model as a testbed to evaluate compounds that target Ang II-induced cardiac remodeling. Through assessing the effects of losartan, relaxin, and saracatinib, the drug screening data implicated multifaceted cardioprotective effects of relaxin in restoring contractile function and reducing fibrotic remodeling. Overall, this study provides a controllable platform where cardiac activities can be explicitly observed and tested over the pathological process. The facile and high-content screening can facilitate the evaluation of potential drug candidates in the pre-clinical stage.


Asunto(s)
Angiotensina II/efectos adversos , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Animales , Cardiomiopatías/patología , Cardiotónicos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Evaluación Preclínica de Medicamentos/métodos , Fibroblastos/metabolismo , Fibrosis , Humanos , Células Madre Pluripotentes Inducidas/citología , Dispositivos Laboratorio en un Chip , Losartán/farmacología , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proyectos Piloto , Proteoma , Proteómica/métodos , Proteínas Recombinantes/farmacología , Relaxina/farmacología , Remodelación Ventricular/efectos de los fármacos
13.
Mitochondrial DNA B Resour ; 6(2): 450-451, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33659704

RESUMEN

Lonicera hypoglauca Miq, which is widely distribute in south China, is an important Chinese plant used in traditional medicine. Here we report the first complete chloroplast (cp) genome sequence of this species. The circular cp genome is 154,581 bp in size, including a large single-copy (LSC) region of 88,379 bp and a small single-copy (SSC) region of 18,646 bp, which were separated by two inverted repeat (IR) regions (IRA and B, 23,778 bp each). A total of 121 genes were annotated, including 8 ribosomal RNAs (rRNAs), 33 transfer RNAs (tRNAs) and 80 protein-coding genes (PCGs). Phylogenetic analysis of 20 representative members within the Caprifoliaceae showed that L. hypoglauca is closely related to the Lonicera macranthoides. This study provides important genetic information for future systematic and evolutionary studies of L. hypoglauca.

14.
Plants (Basel) ; 9(11)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105724

RESUMEN

Fruit-derived bioactive substances have been spotlighted as a regulator against various diseases due to their fewer side effects compared to chemical drugs. Among the most frequently consumed fruits, apple is a rich source of nutritional molecules and contains high levels of bioactive compounds. The main structural classes of apple constituents include polyphenols, polysaccharides (pectin), phytosterols, and pentacyclic triterpenes. Also, vitamins and trace elements complete the nutritional features of apple fruit. There is now considerable scientific evidence that these bioactive substances present in apple and peel have the potential to improve human health, for example contributing to preventing cardiovascular disease, diabetes, inflammation, and cancer. This review will focus on the current knowledge of bioactive substances in apple and their medicinal value for human health.

15.
Zhongguo Zhong Yao Za Zhi ; 45(16): 3826-3836, 2020 Aug.
Artículo en Chino | MEDLINE | ID: mdl-32893577

RESUMEN

Magnolia officinalis is a traditional Chinese medicine,with many years of cultivating process, M. officinalis leaves show more differentiation types due to the exchange of seeds from different provenances. "Da Ao"(DA), "Xiao Ao"(XA), "Chuan Hou"(CH),and "Liu Ye"(LY)are the main types of M. officinalis in Sichuan province of China,and there were obvious differences in growth rate,chemical composition,leaf shape and leaf colour. This study selected different types of M. officinalis leaves(DA,XA,LY and CH)from Sichuan to determine their chlorophyll content. Transcriptomic level sequencing of different types of M. officinalis leaf tissues was by high-throughput sequencing analysis and proteomics used an integrated approach involving TMT labelling and LC-MS/MS to quantify the dynamic changes of the whole proteome of M. officinalis. The results showed that CH had the lowest chlorophyll content while DA had the highest chlorophyll content. Furthermore,transcriptome and proteomics results showed that chlorophyll synthesis pathway in DA glutamine-tRNA reductase,urinary porphyrins decarboxylase(UROD),oxygen-dependent protoporphyrin(ODCO),the original-Ⅲ oxidase protoporphyrin oxidase(PPO),magnesium chelating enzyme subunit ChlD,protoporphyrin magnesium Ⅸ monomethyl ester [oxidative] cyclase(MPPMC)were significantly higher than CH,XA and LY,consistent in the results of determination of chlorophyll content(chlorophyll content was highest of 37.56 mg·g~(-1) FW). Some rate-limiting enzymes related to the chlorophyll synthesis,such as ODCO,PPO and MPPMC were tested by Parallel Reaction Monitoring(PRM),and the results showed that the rate-limiting enzyme content in DA was higher than that in other three types. Therefore,based on the differences in leaf color of four types of M. officinalis,the research conducted a preliminary study on the chlorophyll metabolism pathway in leaves of different types of M. officinalis,and explored relevant genes and proteins causing leaf color differences from the molecular level,so as to lay a foundation for studying the differences in growth and development of different types of M. officinalis.


Asunto(s)
Magnolia , China , Clorofila , Cromatografía Liquida , Hojas de la Planta , Proteoma , Espectrometría de Masas en Tándem , Transcriptoma
16.
ACS Appl Mater Interfaces ; 12(40): 44523-44533, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32910635

RESUMEN

It is highly desired to explore ideal phototherapeutic nanoplatforms, especially containing satisfactory phototherapeutic agents (PTAs), for potential cancer therapies. Herein, we proposed an effective strategy for designing a highly efficient PTA through inhibiting radiative transition (IRT). Specifically, we developed an ultralow radiative BODIPY derivative (TPA-IBDP) by simply conjugating two triphenylamine units to iodine-substituted BODIPY, which could simultaneously facilitate the nonradiative decay channels of singlet-to-triplet intersystem crossing and intramolecular charge transfer. In comparison to the normal BODIPY compound, TPA-IBDP exhibited an outstanding singlet oxygen yield (31.8-fold) and a higher photothermal conversion efficiency (PCE; over 3-fold), respectively, benefiting from the extended π-conjugated donor-to-accepter (D-A) structure and the heavy atom effect. For tumor phototherapy using TPA-IBDP, TPA-IBDP was conjugated with a H2O2-responsive amphiphilic copolymer POEGMA10-b-[PBMA5-co-(PS-N3)2] to construct a multifunctional phototherapeutic BODIPY-based nanoplatform (PB). PB produced abundant singlet oxygen (1O2) and heat along with negligible fluorescence emission under near-infrared laser irradiation. Additionally, PB could generate a GSH-depletion scavenger (quinone methide, QM) after reacting with the abundant intracellular H2O2 in tumor for the cooperative enhancement of IRT-mediated phototherapy. We envision that this highly efficient multifunctional phototherapeutic nanoplatform cooperated by GSH-depletion could be a valuable paradigm for tumor treatments.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Boro/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Polímeros/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Compuestos de Boro/síntesis química , Compuestos de Boro/química , Femenino , Ratones , Tamaño de la Partícula , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Propiedades de Superficie
17.
BMC Plant Biol ; 20(1): 353, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727365

RESUMEN

BACKGROUND: Safflower (Carthamus tinctorius L.) is an important cash crop, of which the dried tube flower is not only an important raw material for dyes and cosmetics but also an important herb widely used in traditional Chinese medicine. The pigment and bioactive compounds are composed of flavonoids (mainly quinone chalcones), and studies have reported that MeJA can promote the biosynthesis of quinone chalcones, but the mechanism underlying the effect of MeJA in safflower remains unclear. Here, we attempt to use metabolomics and transcriptome technologies to analyse the molecular mechanism of flavonoid biosynthesis under MeJA treatment in safflower. RESULTS: Based on a UHPLC-ESI-MS/MS detection platform and a self-built database (including hydroxysafflor yellow A, HSYA), a total of 209 flavonoid metabolites were detected, and 35 metabolites were significantly different after treatment with MeJA. Among them, 24 metabolites were upregulated upon MeJA treatment, especially HSYA. Eleven metabolites were downregulated after MeJA treatment. Integrated metabolomics and transcriptome analysis showed that MeJA might upregulate the expression of upstream genes in the flavonoid biosynthesis pathway (such as CHSs, CHIs and HCTs) and downregulate the expression of downstream genes (such as F3Ms, ANRs and ANSs), thus promoting the biosynthesis of quinone chalcones, such as HSYA. The transcription expressions of these genes were validated by real-time PCR. In addition, the promoters of two genes (CtCHI and CtHCT) that were significantly upregulated under MeJA treatment were cloned and analysed. 7 and 3 MeJA response elements were found in the promoters, respectively. CONCLUSIONS: MeJA might upregulate the expression of the upstream genes in the flavonoid biosynthesis pathway and downregulate the expression of the downstream genes, thus promoting the biosynthesis of quinone chalcones. Our results provide insights and basic data for the molecular mechanism analysis of flavonoid synthesis in safflower under MeJA treatment.


Asunto(s)
Acetatos/farmacología , Carthamus tinctorius/efectos de los fármacos , Ciclopentanos/farmacología , Flavonoides/biosíntesis , Flavonoides/genética , Oxilipinas/farmacología , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Cromatografía Líquida de Alta Presión , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metabolómica/métodos , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
18.
Zhongguo Zhong Yao Za Zhi ; 45(8): 1764-1771, 2020 Apr.
Artículo en Chino | MEDLINE | ID: mdl-32489059

RESUMEN

The network pharmacology was used to explore the potential active ingredients and action mechanisms of Mongolian medicine Cymbaria in the treatment of type 2 diabetes. According to the literatures collected, Cymbaria component database was established to define important active ingredients and key targets for the anti-hyperglycemic effect to predict action mechanism by active ingredient screening and target prediction techniques. Molecular docking predicted binding activity of main active components with key targets in Cymbaria, then verified the action mechanism in vitro. The Cymbaria component database contained 177 chemical components, 90 chemical structures were confirmed, including 34 chemical components with effective targets. According to the prediction results from network pharmacology, 61 biological processes were significantly affected, such as fatty acid metabolism including PPARs signaling pathway, protein kinase activity and insulin signal pathway. Moreover, the key target proteins were Akt1 and TNFα and quercetin, luteolin and catalpol were the main active ingredients of Cymbaria. Molecular docking prediction showed that luteolin, quercetin and catalpol had a strong binding activity with Akt1; luteolin had strong binding activity but quercetin and catalpol had a certain binding activity with TNFα. Furthermore, catalpol showed hypoglycemic effects in vitro, which up-regulated p-Akt(Ser473)/Akt, PPARα and PPARδ levels and reduced FABP4 expression to regulate glycose and lipid metabolism for improving insulin sensitivity. The network pharmacology predicted that the hypoglycemic effect of Cymbaria was mainly related to anti-inflammatory and lipid regulation with a multi-component, multi-target manner. It provided a scientific view of hypoglycemic effect and action mechanism of Cymbaria for further study.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Humanos , Hipoglucemiantes , Medicina Tradicional Mongoliana , Simulación del Acoplamiento Molecular
19.
Nanoscale ; 12(22): 12165-12171, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32490457

RESUMEN

It's a huge challenge to develop effective nanosystems that combine the capabilities of diagnoses and therapies together for colon cancer in the clinic. Herein, we constructed a far-red absorbing phototheranostic nanosystem (FR-H2S) based on the thiolytic reaction of a dinitrophenyl modified phototheranostic prodrug and over-expressed H2S in colon cancer sites for precise imaging-guided phototherapy. FR-H2S with a BODIPY core not only could work as an imaging probe for diagnosis but also act as a phototherapeutic agent for cancer treatment under a single FR laser source (650 nm). FR-H2S exhibited a gradually enhanced fluorescence emission for precise diagnosis of H2S-rich colon tumor sites. After entering tumor cells, FR-H2S could generate abundant 1O2 and heat for phototherapies timely by using the same laser source (650 nm). We believe that this precise imaging-guided phototheranostic nanosystem could provide a promising approach to colon cancer with minimal damage.


Asunto(s)
Neoplasias del Colon , Nanomedicina Teranóstica , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/terapia , Humanos , Fototerapia
20.
Sci Rep ; 10(1): 9680, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541892

RESUMEN

Saffron, derived from the stigma of Crocus sativus, is not only a valuable traditional Chinese medicine but also the expensive spice and dye. Its yield and quality are seriously influenced by its flowering transition. However, the molecular regulatory mechanism of the flowering transition in C. sativus is still unknown. In this study, we performed morphological, physiological and transcriptomic analyses using apical bud samples from C. sativus during the floral transition process. Morphological results indicated that the flowering transition process could be divided into three stages: an undifferentiated period, the early flower bud differentiation period, and the late flower bud differentiation period. Sugar, gibberellin (GA3), auxin (IAA) and zeatin (ZT) levels were steadily upregulated, while starch and abscisic acid (ABA) levels were gradually downregulated. Transcriptomic analysis showed that a total of 60 203 unigenes were identified, among which 19 490 were significantly differentially expressed. Of these, 165 unigenes were involved in flowering and were significantly enriched in the sugar metabolism, hormone signal transduction, cell cycle regulatory, photoperiod and autonomous pathways. Based on the above analysis, a hypothetical model for the regulatory networks of the saffron flowering transition was proposed. This study lays a theoretical basis for the genetic regulation of flowering in C. sativus.


Asunto(s)
Crocus/fisiología , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Crocus/genética , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Anotación de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zeatina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA