Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 221: 8-15, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36075149

RESUMEN

Selenylation Astragalus polysaccharides (Se-APS) was fabricated by an optimized microwave-assisted method. Their physicochemical properties, antioxidant capacities and selenium (Se) release rate under gastrointestinal conditions were determined. Se-APS with the highest Se content (18.8 mg/g) was prepared in 0.4 % nitric acid, under the microwave conditions of 90 min and 80 °C. FTIR and XPS spectra indicated that Se was bound to the polysaccharide chain in the form of O-Se-O and O-H···Se, and most of Se+4 was reduced to Se0. Meanwhile, the micromorphology of Se-APS became clusters, loose and porous, which decreased its hydrodynamic particle size and negative surface charges. Besides, Se-APS displayed strong scavenging capacities towards ABTS and superoxide anion free radicals than Na2SeO3, and showed higher Se release rate (12.52 ± 0.31 %) under intestinal fluid comparing with gastric fluid (3.14 ± 0.38 %) during 8 h in vitro digestion. The results provided efficient preparation method references for selenylation polysaccharides, and broaden the application fields of APS.


Asunto(s)
Planta del Astrágalo , Selenio , Microondas , Planta del Astrágalo/química , Polisacáridos/química , Selenio/química , Antioxidantes/química
2.
Bioresour Technol ; 341: 125800, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34438288

RESUMEN

A novel Silicon carbide (SiC) foam ceramic based ZSM-5/SiC nanowires microwave-responsive catalyst was developed to upgrade the pyrolysis volatiles in a microwave-assisted series system (both the pyrolysis and catalytic systems were heated by microwave). The growth of SiC nanowires was helpful for the ZSM-5 growth on the SiC foam ceramic. Because the specific surface area of SiC foam ceramic was improved. The dielectric properties of the composite catalyst were improved due to the growth of SiC nanowires. Bio-oil composition analysis showed that area percentage of hydrocarbons and aromatic hydrocarbons could reach 80.89% and 40.48% at catalytic temperature of 450 ℃and 500 ℃, respectively. The microwave-responsive composite catalyst had good aromatization performance in microwave-assisted series system due to high dielectric properties and specific surface area. The composite catalyst performed well after five-cycle regeneration, and the hydrocarbon content could still reach 76.40%, which is 80.89% for the original catalyst.


Asunto(s)
Microondas , Pirólisis , Biocombustibles , Catálisis , Calor , Hidrocarburos , Aceites de Plantas , Polifenoles , Glycine max
3.
Bioresour Technol ; 302: 122843, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32006926

RESUMEN

The composite catalysts were synthesized with SiC powder and ZSM-5 and were characterized by Brunauer-Emmett-Teller, X-ray diffraction, thermogravimetric analysis, pyridine-infrared spectroscopy, and scanning electron microscopy. The catalysts showed a high heating rate and excellent catalytic performance for pyrolysis vapors, and the product fractional distribution and chemical compositions of bio-oil in a tandem system (microwave pyrolysis and microwave ex-situ catalytic reforming) was examined. Experimental results confirmed the quality of bio-oil produced by the microwave-induced catalytic reforming was better than that product through electric heating. Additionally, 36.94 wt% of bio-oil was obtained using the catalyst with 20%ZSM-5/SiC under the following conditions: feed-to-catalyst ratio, 2:1; pyrolysis temperature, 550 °C; and catalytic temperature, 350 °C. The selectivities of hydrocarbons reached up to 75.88%. After five cycles, the activity of the regenerated composite catalyst was retained at 95% of the original catalyst.


Asunto(s)
Glycine max , Microondas , Biocombustibles , Catálisis , Calefacción , Calor , Aceites de Plantas , Polifenoles , Pirólisis
4.
Bioresour Technol ; 299: 122611, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31874451

RESUMEN

Microwave-assisted co-pyrolysis of low hydrogen-to-carbon and high hydrogen-to-carbon effective ratio materials with the aid of HZSM-5 and MCM-41 is a promising technique to improve the bio-oil quality. The low content of hydrocarbons and short life cycle of catalyst limit the application of pyrolysis technology in biomass energy conversion. The effects of catalytic temperature, and HZSM-5-to-MCM-41, feedstock-to-catalyst, and straw-to-soapstock ratios on the yield and composition of bio-oil were studied in this work. The quality of bio-oil during biomass pyrolysis can be improved by adjusting the operating conditions. The optimal catalytic temperature, and ratios of HZSM-5-to-MCM-41, feedstock-to-catalyst, and straw-to-soapstock were 400 °C, 1:1, 2:1, and 1:2, respectively. The addition of MCM-41 was beneficial in prolonging the life of HZSM-5 since the macromolecular compounds cracked when MCM-41 was added which restrain the generation of coke. The co-pyrolysis of soapstock with straw advanced the deoxygenation of oxygen-containing compounds especially phenol from straw during pyrolysis.


Asunto(s)
Microondas , Pirólisis , Biocombustibles , Biomasa , Catálisis , Calor , Aceites de Plantas , Polifenoles , Dióxido de Silicio
5.
Bioresour Technol ; 279: 202-208, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30735929

RESUMEN

A ZSM-5/SiC composite catalyst was synthesized and characterized by Brunauer-Emmett-Teller analysis, X-ray diffraction, and scanning electron microscopy in this study. The composite catalyst had the characteristics of ZSM-5 and SiC, and the surface of SiC grew evenly with a layer of ZSM-5. The effect of the composite catalyst on the product distribution and chemical composition in a co-pyrolysis downdraft system was investigated. In a down system with a catalytic temperature of 450 °C, a feed-to-catalyst ratio of 2:1, and a soybean-soapstock-to-straw ratio of 1:1, the proportions of alkanes, olefins, aromatics, and phenoxy compounds were 6.82%, 4.5%, 73.56% and 11.11%, respectively. The composite catalyst combined the catalytic performance of ZSM-5 and SiC, increasing the proportion of aromatics and decreasing the proportion of oxygen-containing compound in the bio-oil. Moreover, the composite catalyst maintained its activity after reusing several times.


Asunto(s)
Biomasa , Compuestos de Silicona/química , Zeolitas/química , Catálisis , Aceites de Plantas/metabolismo , Polifenoles/metabolismo , Pirólisis , Temperatura , Difracción de Rayos X
6.
Bioresour Technol ; 269: 162-168, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30172179

RESUMEN

In this study, a continuous fast microwave-assisted pyrolysis system was developed to produce bio-oil, gas, and biochar from rice straw and Camellia oleifera shell. The effects of different pyrolysis temperatures (400 °C, 500 °C, and 600 °C) and feed rates (rice straw: 25, 45, and 66 g/min; C. oleifera shell: 100, 200, and 400 g/min) on bio-oil production were investigated. Experimental results showed that the yields of bio-oil (31.86 wt%) and gas (54.49 wt%) produced by the microwave-assisted pyrolysis of rice straw increased with increasing temperature. By contrast, the yields of bio-oil (27.45 wt%) and biochar (35.47 wt%) produced by the pyrolysis of C. oleifera shell decreased with increasing temperature. The contents of phenols, aldehydes, and alcohols in bio-oil produced from the shell were higher than those in bio-oil derived from rice straw.


Asunto(s)
Biocombustibles , Microondas , Aceites de Plantas , Polifenoles , Calor
7.
Bioresour Technol ; 251: 57-62, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29268151

RESUMEN

This study performed microwave-assisted acid pretreatment on pure lignin. The effects of microwave temperature, microwave time, and hydrochloric acid concentration on characteristics and pyrolysis behavior of lignin were examined. Results of ultimate analysis revealed better properties of all pretreated samples than those of raw lignin. Fourier transform infrared spectroscopy analysis showed breakage of ßO4 bond and aliphatic side chain, decrease in OH groups, and formation of CO groups in pretreatment. Microwave temperature exerted more significant influence on lignin structure. Thermal stability of treated lignin was improved and insensitive to short microwave time and acid concentration under mild conditions. Resulting from improved alkyl-phenols and decreased alkoxy-phenols, microwave-assisted acid pretreatment of lignin yielded bio-oil with excellent quality. Total yield of phenols in pyrolysis vapors (200 °C) improved to 14.15%, whereas that of guaiacols decreased to 22.36%. This study shows that microwave-assisted acid pretreatment is a promising technology for lignin conversion.


Asunto(s)
Microondas , Aceites de Plantas , Polifenoles , Álcalis , Lignina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA