Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chin Med ; 18(1): 122, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735401

RESUMEN

BACKGROUND: Curdione is a sesquiterpene isolated from Curcumae Rhizoma that possesses high biological activity and extensive pharmacological effects. As a traditional Chinese medicine, Curcumae Rhizoma can inhibit the development of many types of cancer, especially colorectal cancer. However, the anti-colorectal mechanism of its monomer curdione remains unclear. METHODS: Colorectal cancer (CRC) cells were treated with curdione at doses of 12.5 µM, 25 µM, and 50 µM, and then the cells' activity was measured with methyl thiazolyl tetrazolium (MTT). Nude mice were administered different doses of curdione subcutaneously and oxaliplatin by tail vein injection, and then hematoxylin-eosin (HE) staining was adopted to examine tumor histology. Moreover, flow cytometry was applied to detect reactive oxygen species in cells and tissues. Kits were employed to detect the levels of iron ions, malondialdehyde, lipid hydroperoxide, and glutathione. Polymerase chain reaction (PCR) and Western blotting were adopted to detect ferroptosis and m6A modification-related factors. A methylation spot hybridization assay was performed to measure changes in overall methylation. SLC7A11 and HOXA13 were measured by MeRIP-qPCR. The shRNA-METTL14 plasmid was constructed to verify the inhibitory effect of curdione on CRC. RESULTS: A dose-dependent decrease in activity was observed in curdione-treated cells. Curdione increased the accumulation of reactive oxygen species in CRC cells and tumor tissues, greatly enhanced the levels of malondialdehyde, lipid hydroperoxide and Fe2+, and lowered the activity of glutathione. According to the qPCR and Western blot results, curdione promoted the expression of METTL14 and YTHDF2 in CRC cells and tissues, respectively, and decreased the expression of SLC7A11, SLC3A2, HOXA13, and glutathione peroxidase 4. Additionally, in animal experiments, the curdione-treated group showed severe necrosis of tumor cells, as displayed by HE staining. Furthermore, compared with the control group, levels of m6A modifying factors (namely, SLC7A11 and HOXA13) were increased in the tissues after drug intervention. METTL14 knockdown was followed by an increase in CRC cell activity and glutathione levels. However, the levels of reactive oxygen species, malondialdehyde, and iron ions decreased. The expression levels of SLC7A11, SLC3A2, HOXA13, and GPX4 were all increased after METTL14 knockdown. CONCLUSION: The results suggest that curdione induces ferroptosis in CRC by virtue of m6A methylation.

2.
Acta Biochim Pol ; 65(1): 35-41, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29281744

RESUMEN

One of the earliest critical secondary complications of diabetes is the opacification of the eye lens - a condition strictly associated with diabetic cataract. The study presented here was designed to investigate the effect of Ginkgo biloba extract (GbE), rutin and quercetin on streptozotocin (STZ) induced diabetic cataract (DC) rats. Ten weeks after administration of GbE, rutin and quercetin, the opacity of diabetic rats' lenses was graded under a slit lamp. Then, the levels of malondialdehyde (MDA), reduced glutathione (GSH), advanced glycosylation end products (AGEs), and the activities of aldose reductase (AR) were estimated. The DC-induced rats produced less GSH, higher levels of MDA and AGEs as well as elevated AR activity when compared to the normal group. Administration of GbE, rutin and quercetin remarkably inhibited the AR activity, stimulated the production of glutathione, and decreased the levels of MDA and AGEs in the lenses of DC-induced rats, which eventually delayed the progression of lens opacification in diabetic rats to various degrees. Our results revealed that quercetin had the highest significant (P<0.05) potential to delay the progression of STZ-induced diabetic cataract when compared with rutin and GbE. The mechanism dictating this interesting prowess of quercetin might be attributed to its AR inhibitory strength, anti-lipid peroxidation potential and anti-AGEs activity.


Asunto(s)
Catarata/tratamiento farmacológico , Complicaciones de la Diabetes/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Aldehído Reductasa/efectos de los fármacos , Animales , Catarata/etiología , Catarata/prevención & control , Diabetes Mellitus Experimental , Ginkgo biloba , Cristalino/patología , Extractos Vegetales/uso terapéutico , Polímeros/metabolismo , Quercetina/uso terapéutico , Ratas , Rutina/uso terapéutico
3.
Zhongguo Zhong Yao Za Zhi ; 37(21): 3208-14, 2012 Nov.
Artículo en Chino | MEDLINE | ID: mdl-23397714

RESUMEN

The rhizome of Alpinia officinarum is a widely used Chinese herbal medicine. The essential oil in A. officinarum rhizome is mainly composed of 1, 8-cineole and other monoterpenes, as the major bioactive ingredients. In plants, monoterpenes are synthesized through the methylerythritol phosphate (MEP) pathway in the plastids, and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) is an enzyme catalyzing a committed step of the MEP pathway. In the present study, the full-length cDNA encoding DXR was cloned from the rhizome of A. officinarum, using homology-based RT-PCR and rapid amplification of cDNA ends (RACE) techniques. The new cDNA was designated as AoDXR and submitted to GenBank to be assigned with an accession number HQ874658. The full-length cDNA of AoDXR was 1 670 bp containing a 1 419 bp open reading frame encoding a polypeptide of 472 amino acids with a calculated molecular mass of 51.48 kDa and an isoelectric point of 6.15. Bioinformatic analyses revealed that AoDXR showed extensive homology with DXRs from other plant species and contained a conserved plastids transit peptide, a Pro-rich region and two highly conserved NADPH-binding motifs in its N-terminal region characterized by all plant DXRs. The phylogenetic analysis revealed that AoDXR belonged to angiosperm DXRs. The structural modeling of AoDXR showed that AoDXR had the typical V-shaped structure of DXR proteins. The tissue expression pattern analysis indicated that AoDXR expressed strongly in leaves, weak in rhizomes of A. officinarum. Exogenous methyl jasmonate (MeJA) could enhance the expression of AoDXR and the production of 1, 8-cineole in A. officinarum rhizomes. The cloning and characterization of AoDXR will be helpful to reveal the molecular regulation mechanism of monoterpene biosynthesis in A. officinarum and provides a candidate gene for metabolic engineering in improving the medicinal quality of A. officinarum rhizome.


Asunto(s)
Isomerasas Aldosa-Cetosa/genética , Alpinia/enzimología , ADN Complementario/genética , Alpinia/química , Alpinia/genética , Secuencia de Aminoácidos , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Monoterpenos/metabolismo , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA