Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 45(2): 929-939, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471931

RESUMEN

The effects of biochar application on soil nitrous oxide (N2O) and methane (CH4) emissions in a typical rice-vegetable rotation system in Hainan after two years were investigated. The aim was to clarify the long-term effects of biochar on greenhouse gas emissions under this model, and it provided a theoretical basis for N2O and CH4 emission reduction in rice-vegetable rotation systems in tropical regions of China. Four treatments were set up in the field experiment, including no nitrogen fertilizer control (CK); nitrogen, phosphorus, and potassium fertilizer (CON); nitrogen, phosphorus, and potassium fertilizer combined with 20 t·hm-2 biochar (B1); and nitrogen, phosphorus, and potassium fertilizer combined with 40 t·hm-2 biochar (B2). The results showed that: ① compared with that in the CON treatment, the B1 and B2 treatments significantly reduced N2O emissions by 32% and 54% in the early rice season (P < 0.05, the same below), but the B1 and B2 treatments significantly increased N2O emissions by 31% and 81% in the late rice season. The cumulative emissions of N2O in the pepper season were significantly higher than those in the early and late rice seasons, and the B1 treatment significantly reduced N2O emissions by 35%. There was no significant difference between the B2 and CON treatments. ② Compared with that in the CON treatment, B1 and B2 significantly reduced CH4 emissions by 63% and 65% in the early rice season, and the B2 treatment significantly increased CH4 emissions by 41% in the late rice season. There was no significant difference between the B1 and CON treatments. There was no significant difference in cumulative CH4 emissions between treatments in the pepper season. ③ The late rice season contributed to the main global warming potential (GWP) of the rice-vegetable rotation system, and CH4 emissions determined the magnitude of GWP and greenhouse gas emission intensity (GHGI). After two years of biochar application, B1 reduced the GHGI of the whole rice-vegetable rotation system, and B2 increased the GHGI and reached a significant level. However, the B1 and B2 treatments significantly reduced GHGI in the early rice season and pepper season, and only the B2 treatment increased GHGI in the late rice season. ④ Compared with that in the CON treatment, the B1 and B2 treatments significantly increased the yield of early rice by 33% and 51%, and the B1 and B2 treatments significantly increased the yield of pepper season by 53% and 81%. In the late rice season, there was no significant difference in yield except for in the CK treatment without nitrogen fertilizer. The results showed that the magnitude of greenhouse gas emissions in the tropical rice-vegetable rotation system was mainly determined by CH4 emissions in the late rice season. After two years of biochar application, only low biochar combined with nitrogen fertilizer had a significant emission reduction effect, but high and low biochar combined with nitrogen fertilizer increased the yield of early rice and pepper crops continuously.


Asunto(s)
Carbón Orgánico , Gases de Efecto Invernadero , Oryza , Gases de Efecto Invernadero/análisis , Agricultura/métodos , Fertilizantes/análisis , Suelo , Nitrógeno , China , Metano/análisis , Óxido Nitroso/análisis , Fósforo , Verduras , Potasio
2.
Huan Jing Ke Xue ; 43(11): 5159-5168, 2022 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-36437088

RESUMEN

Rain and heat conditions are abundant in tropical areas, and rubber and tea are widely planted in this region; the nitrification process produces nitrate content, which is not conducive to the maintenance of nitrogen nutrients, and has negative environmental effects (nitrogen oxide emissions). The characteristics of soil nitrification rate and nitrogen oxide emission under different land use patterns remain unclear. An incubation experiment was conducted under the 5 a (T5) and 15 a (T15) tea plantation soils and the nearby typical rubber plantation (XJ) soils in Baisha county of Hainan province under two moisture contents (50% WFPS-L and 80% WFPS-H) for 71 d at 25℃. The results showed that:① after the rubber plantation was converted to a tea plantation, the net nitrification and soil NO and N2O emissions were significantly reduced under high moisture content. The overall trend was in the order of XJH>T15H>T5H, and the values of soil net nitrification and NO and N2O emissions were as high as 4.2 mg·(kg·d)-1, 1.4 mg·kg-1, and 14.3 mg·kg-1 in the XJH treatment, respectively. Under the low moisture content, soil NO emissions in tea field soil were significantly reduced relative to those in rubber plantation soil, N2O emissions had no significant difference among different treatments, and net nitrification had no significant difference between the XJ and T15 treatments. There was a significant positive correlation between NO emissions and net nitrification rate (P<0.01). ② The net nitrification of XJH was higher than that of XJL, but the net nitrification values under different moisture contents in tea field soil was in contrast to that in rubber plantation soil. The NO emissions of XJ and T15 under different moisture contents were consistent with the trend of net nitrification, and the high nitrification promoted NO emissions, whereas NO emissions of T5 were not significantly affected by moisture content. The high moisture content treatment significantly promoted N2O emissions relative to those under the low moisture content treatment. The results showed that SOM, TN, pH, and moisture content were the key factors affecting soil net nitrification rate, NO, and N2O emissions. The conversion of the rubber plantation to a tea plantation significantly reduced the net nitrification rate and negative impact on the environment under high moisture content.


Asunto(s)
Nitrificación , Suelo , Goma , Óxido Nítrico , China ,
3.
Huan Jing Ke Xue ; 43(11): 5149-5158, 2022 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-36437087

RESUMEN

The study of the effects of different fertilization treatments on soil methane (CH4) and nitrous oxide (N2O) emissions in rice-vegetable rotation systems is of great significance to supplement the research gap on greenhouse gas emissions in tropical regions of China. In this study, four fertilization treatments were set up during the pepper season:phosphorus and potassium fertilizer application (PK); nitrogen, phosphorus, and potassium (NPK) application; half application of nitrogen, phosphorus, and potassium plus half application of organic fertilizer (NPK+M); and application of organic fertilizer (M). There was no fertilizer application during the following early rice season. The objective of our study was to investigate the rules of CH4 and N2O emissions under different fertilization treatments in the pepper growth season, and the effects of different fertilization treatments in the pepper growth season on rice yield, and CH4 and N2O emissions in the following early rice growth season. The close static chamber-gas chromatography method was applied to determine soil CH4 and N2O emissions. We measured crop yield, estimated global warming potential (GWP), and calculated greenhouse gas emission intensity (GHGI). Our results showed that:① the cumulative CH4 emission under the four fertilization treatments ranged between 0.9 kg·hm-2 to 2.7 kg·hm-2 during the pepper growth season and between 5.5 kg·hm-2 to 8.4 kg·hm-2 during the early rice growth season. Compared with NPK, NPK+M and M reduced the cumulative CH4 emission in the pepper growth season by 35.3% and 7.6%, respectively; however, NPK+M and M increased the cumulative CH4 emission in the early rice season by 37.5% and 55.1%, respectively. There was a significant difference in cumulative CH4 emission between M and NPK in the early rice growth season. ② The cumulative N2O emission under the four fertilization treatments varied from 0.5 kg·hm-2 to 3.0 kg·hm-2 in the pepper growth season and from 0.3 kg·hm-2 to 0.5 kg·hm-2 in the early rice growth season. The cumulative N2O emission was significantly decreased by 33.7% in NPK+M and by 16.0% in M, compared with that in NPK. In the early rice growth season, the cumulative N2O emission was decreased by 23.5% by NPK+M but was increased by 9.1% by M. There was no significant difference in the cumulative N2O emission among the four fertilization treatments. ③ The yields of pepper and early rice under the four fertilization treatments were 3055.6-37722.5 kg·hm-2 and 5850.9-6994.4 kg·hm-2, respectively. Compared with that in NPK, NPK+M and M significantly increased pepper yield. The GWP under the four fertilization treatments in the pepper-early rice rotation system varied from 508.0 kg·hm-2 to 1864.4 kg·hm-2. Compared with NPK, NPK+M significantly decreased GWP by 25.7% and M insignificantly decreased GWP by 5.7%. The pepper growth season with the four fertilization treatments contributed to 69.2%-78.1% of the total GWP, and N2O contributed to 77.3%-85.3% of the total GWP. The GHGI ranged between 0.03 kg·kg-1 and 0.09 kg·kg-1 in the pepper growth season and between 0.04 kg·kg-1 and 0.24 kg·kg-1 in the early rice growth season. Compared with that in NPK, both M and NPK+M significantly reduced the GHGI by 71.5% and 54.7%, respectively, in the pepper growth season. In the early rice season, NPK+M significantly decreased the GHGI by 44.0%, but M non-significantly decreased the GHGI by 20.8%. The peak in N2O emission in the tropical pepper-early rice rotation system appeared after fertilization, and N2O emissions primarily occurred in the pepper growth season. However, CH4 emission was mainly concentrated in the early rice season. Considering the overall enhancing effects on crop yield and mitigation of greenhouse gas emissions, the co-application of chemical and organic fertilizers (NPK+M) can be recommended as an optimal fertilization practice to mitigate greenhouse gas emissions and maintain crop yield in pepper-rice rotation systems of Hainan, China.


Asunto(s)
Gases de Efecto Invernadero , Oryza , Óxido Nitroso/análisis , Metano/análisis , Gases de Efecto Invernadero/análisis , Verduras , Agricultura/métodos , Fertilizantes/análisis , Suelo/química , Nitrógeno/análisis , Fósforo/análisis , Potasio , Fertilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA