Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1082-1090, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621915

RESUMEN

This study aims to investigate the impact of Kuntai Capsules(KTC) on polycystic ovarian syndrome(PCOS) rat models and explore the underlying mechanism. Fifty female SD rats were randomly divided into five groups(10 rats in each group), including control group, model group, low-, medium-, and high-dose KTC group. Except for the control group, the other groups were injected with dehydroepiandrosterone(DHEA) combined with a high-fat diet(HFD) to induce the PCOS rat model for 28 days. 0.315, 0.63, and 1.26 g·kg~(-1)·d~(-1) KTC was dissolved in the same amount of normal saline and given to low-, medium-, and high-dose KTC groups by gavage. Both control group and model group were given the same amount of normal saline for 15 days. After administration, fasting blood glucose(FBG) was measured by a glucose meter. Fasting insulin(FINS), luteinizing hormone(LH), testosterone(T), and follicle-stimulating hormone(FSH) were detected by enzyme-linked immunosorbent assay(ELISA), and LH/FSH ratio and insulin resistance index(HOMA-IR) were calculated. The pathological morphology of ovarian tissue was observed by hematoxylin-eosin(HE) staining. The expression levels of collagen α type Ⅲ 1 chain(COL3A1), apoptotic factors Bax, and Bcl-2 were detected using Western blot and immunofluorescence. The mRNA expressions of COL3A1, Bax, and Bcl-2 in ovarian tissue were performed by real-time PCR(RT-PCR). The results show that compared with the control group, the body weight, serum levels of FBG, FINS, LH, T, LH/FSH, and HOMA-IR are higher in model group(P<0.05 or P<0.01), and the level of FSH is lower(P<0.05). In model group, a large number of white blood cells are found in the vaginal exfoliated cells, mainly in the interictal phase. There are more cystic prominences on the surface of the ovary. The thickness of the granular cell layer is reduced, and oocytes are absent. COL3A1 and Bax protein expression levels are increased(P<0.01), while Bcl-2 protein expression levels are decreased(P<0.05) in the ovarian tissue COL3A1 and Bax mRNA expression levels are increased in ovarian tissue(P<0.05). Compared with the model group, the body weight, FBG, FINS, LH, T, LH/FSH, and HOMA-IR in low-, medium-, and high-dose KTC groups are decreased(P<0.05 or P<0.01), while the levels of FSH in medium-, and high-dose KTC groups are increased(P<0.05 or P<0.01). Low-, medium-, and high-dose KTC groups gradually show a stable interictal phase. The surface of the ovary is smooth. Oocytes and mature follicles can be seen in ovarian tissue, and the thickness of the granular cell layer is increased. The expression level of COL3A1 protein decreases in low-and medium-dose KTC groups(P<0.05 or P<0.01), and that of Bax protein decreases in low-dose KTC group(P<0.05 or P<0.01), and the expression level of Bcl-2 protein increases in low-dose KTC group(P<0.01). The expression levels of COL3A1 and Bax mRNA decreased in the low-dose KTC group(P<0.05), while the expression levels of Bcl-2 mRNA increased(P<0.05). In summary, KTC can inhibit ovarian granulosa cell apoptosis and reduce follicular atresia by regulating the AGE-RAGE signaling pathway. It can promote insulin secretion, reduce blood sugar and body weight, restore serum hormone levels, improve symptoms of PCOS, alleviate morphological damage of the ovary, and restore ovarian function, which is of great value in the treatment of PCOS.


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Ratas , Femenino , Animales , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/genética , Proteína X Asociada a bcl-2 , Solución Salina , Ratas Sprague-Dawley , Atresia Folicular , Transducción de Señal , Peso Corporal , Hormona Folículo Estimulante , ARN Mensajero
2.
Fitoterapia ; 175: 105907, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38479617

RESUMEN

Five new compounds were identified from the stems of Ephedra equisetina Bunge. Their structures were elucidated by spectroscopic methods, involving UV, IR, NMR spectrum and HRESIMS analyses. The absolute configuration of compound 2 was proved by comparing their experimental and calculated ECD spectrum. The vitro bioactive assay of all compounds suggested that compound 1, 3, 4, 5 and 6 may have potential anti-asthmatic activities.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38516703

RESUMEN

Traditional Chinese medicine (TCM) has been used to treat triple-negative breast cancer (TNBC), a breast cancer subtype with poor prognosis. Clinical studies have verified that the Sanyingfang formula (SYF), a TCM prescription, has obvious effects on inhibiting breast cancer recurrence and metastasis, prolonging patient survival, and reducing clinical symptoms. However, its active ingredients and molecular mechanisms are still unclear. In this study, the active ingredients of each herbal medicine composing SYF and their target proteins are obtained from the Traditional Chinese Medicine Systems Pharmacology database. Breast cancer-related genes are obtained from the GeneCards database. Major targets and pathways related to SYF treatment in breast cancer are identified by analyzing the above data. By conducting molecular docking analysis, we find that the active ingredients quercetin and luteolin bind well to the key targets KDR1, PPARG, SOD1, and VCAM1. In vitro experiments verify that SYF can reduce the proliferation, migration, and invasion ability of TNBC cells. Using a TNBC xenograft mouse model, we show that SYF could delay tumor growth and effectively inhibit the occurrence of breast cancer lung metastasis in vivo. PPARG, SOD1, KDR1, and VCAM1 are all regulated by SYF and may play important roles in SYF-mediated inhibition of TNBC recurrence and metastasis.

4.
Chin J Nat Med ; 22(3): 224-234, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38553190

RESUMEN

The role of NF-κB and the NLRP3 inflammasome in the chronic inflammatory microenvironment of non-alcoholic steatohepatitis (NASH) has been posited as crucial. The Yanggan Jiangmei Formula (YGJMF) has shown promise in ameliorating hepatic steatosis in NASH patients, yet its pharmacological mechanisms remain largely unexplored. This study was conducted to investigate the efficacy of YGJMF in NASH and to elucidate its pharmacological underpinnings. To simulate NASH both in vivo and in vitro, high-fat-diet (HFD) rats and HepG2 cells stimulated with free fatty acids (FFAs) were utilized. The severity of liver injury and lipid deposition was assessed using serum indicators, histopathological staining, micro-magnetic resonance imaging (MRI), and the liver-to-muscle signal intensity ratio (SIRL/M). Furthermore, a combination of enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), immunofluorescence, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting analyses was employed to investigate the NF-κB/NLRP3 signaling pathway and associated cytokine levels. The results from liver pathology, MRI assessments, and biochemical tests in rat models demonstrated YGJMF's significant effectiveness in reducing liver damage and lipid accumulation. Additionally, YGJMF markedly reduced hepatocyte inflammation by downregulating inflammatory cytokines in both liver tissue and serum. Furthermore, YGJMF was found to disrupt NF-κB activation, consequently inhibiting the assembly of the NLRP3 inflammasome in both the in vitro and in vivo models. The preliminary findings of this study suggest that YGJMF may alleviate hepatic steatosis and inhibit the NF-κB/NLRP3 signaling pathway, thereby exerting anti-inflammatory effects in NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratas , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas , Hígado , Transducción de Señal , Inflamación/metabolismo , Lípidos , Ratones Endogámicos C57BL
5.
Neuroimage ; 290: 120558, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38437909

RESUMEN

The prolonged duration of chronic low back pain (cLBP) inevitably leads to changes in the cognitive, attentional, sensory and emotional processing brain regions. Currently, it remains unclear how these alterations are manifested in the interplay between brain functional and structural networks. This study aimed to predict the Oswestry Disability Index (ODI) in cLBP patients using multimodal brain magnetic resonance imaging (MRI) data and identified the most significant features within the multimodal networks to aid in distinguishing patients from healthy controls (HCs). We constructed dynamic functional connectivity (dFC) and structural connectivity (SC) networks for all participants (n = 112) and employed the Connectome-based Predictive Modeling (CPM) approach to predict ODI scores, utilizing various feature selection thresholds to identify the most significant network change features in dFC and SC outcomes. Subsequently, we utilized these significant features for optimal classifier selection and the integration of multimodal features. The results revealed enhanced connectivity among the frontoparietal network (FPN), somatomotor network (SMN) and thalamus in cLBP patients compared to HCs. The thalamus transmits pain-related sensations and emotions to the cortical areas through the dorsolateral prefrontal cortex (dlPFC) and primary somatosensory cortex (SI), leading to alterations in whole-brain network functionality and structure. Regarding the model selection for the classifier, we found that Support Vector Machine (SVM) best fit these significant network features. The combined model based on dFC and SC features significantly improved classification performance between cLBP patients and HCs (AUC=0.9772). Finally, the results from an external validation set support our hypotheses and provide insights into the potential applicability of the model in real-world scenarios. Our discovery of enhanced connectivity between the thalamus and both the dlPFC (FPN) and SI (SMN) provides a valuable supplement to prior research on cLBP.


Asunto(s)
Conectoma , Dolor de la Región Lumbar , Humanos , Dolor de la Región Lumbar/diagnóstico por imagen , Encéfalo , Tálamo , Imagen por Resonancia Magnética/métodos
6.
Am J Chin Med ; 52(1): 57-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38353634

RESUMEN

Chronic respiratory diseases are long-term conditions affecting the airways and other lung components that are characterized by a high prevalence, disability rate, and mortality rate. Further optimization of their treatment is required. Natural products, primarily extracted from organisms, possess specific molecular and structural formulas as well as distinct chemical and physical properties. These characteristics grant them the advantages of safety, gentleness, accessibility, and minimal side effects. The numerous advances in the use of natural products for treating chronic respiratory diseases have provided a steady source of motivation for new drug research and development. In this paper, we introduced the pathogenesis of chronic respiratory diseases and natural products. Furthermore, we classified natural products according to their mechanism for treating chronic respiratory diseases and describe the ways in which these products can alleviate the pathological symptoms. Simultaneously, we elaborate on the signal transduction pathways and biological impacts of natural products' targeting. Additionally, we present future prospects for natural products, considering their combination treatment approaches and administration methods. The significance of this review extends to both the research on preventing and treating chronic respiratory diseases, as well as the advancement of novel drug development in this field.


Asunto(s)
Productos Biológicos , Enfermedades Respiratorias , Humanos , Productos Biológicos/uso terapéutico , Productos Biológicos/química , Desarrollo de Medicamentos , Enfermedades Respiratorias/tratamiento farmacológico
7.
Ageing Res Rev ; 93: 102160, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065225

RESUMEN

Central nervous system (CNS) diseases have become one of the leading causes of death in the global population. The pathogenesis of CNS diseases is complicated, so it is important to find the patterns of the disease to improve the treatment strategy. Microglia are considered to be a double-edged sword, playing both harmful and beneficial roles in CNS diseases. Therefore, it is crucial to understand the progression of the disease and the changes in the polar phenotype of microglia to provide guidance in the treatment of CNS diseases. Microglia activation may evolve into different phenotypes: M1 and M2 types. We focused on the roles that M1 and M2 microglia play in regulating intercellular dialogues, pathological reactions and specific diseases in CNS diseases. Importantly, we summarized the strategies used to modulate the polarization phenotype of microglia, including traditional pharmacological modulation, biological therapies, and physical strategies. This review will contribute to the development of potential strategies to modulate microglia polarization phenotypes and provide new alternative therapies for CNS diseases.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Microglía , Humanos , Microglía/patología , Enfermedades del Sistema Nervioso Central/terapia , Enfermedades del Sistema Nervioso Central/patología , Fenotipo
8.
Neuropsychopharmacology ; 49(2): 455-466, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37848732

RESUMEN

The comorbidity of chronic pain and mental dysfunctions such as anxiety disorders has long been recognized, but the underlying mechanisms remained poorly understood. Here, using a mouse model of neuropathic pain, we demonstrated that the thalamic paraventricular nucleus (PVT) played a critical role in chronic pain-induced anxiety-like behavioral abnormalities. Fiber photometry and electrophysiology demonstrated that chronic pain increased the activities in PVT glutamatergic neurons. Chemogenetic manipulation revealed that suppression of PVT glutamatergic neurons relieved pain-like behavior and anxiety-like behaviors. Conversely, selective activation of PVT glutamatergic neurons showed algesic and anxiogenic effects. Furthermore, the elevated excitability of PVT glutamatergic neurons resulted in increased excitatory inputs to the basolateral complex (BLA) neurons. Optogenetic manipulation of the PVT-BLA pathway bilaterally modulates both the pain-like behavior and anxiety-like phenotypes. These findings shed light on how the PVT-BLA pathway contributed to the processing of pain-like behavior and maladaptive anxiety, and targeting this pathway might be a straightforward therapeutic strategy to both alleviate nociceptive hypersensitivity and rescue anxiety behaviors in chronic pain conditions.


Asunto(s)
Complejo Nuclear Basolateral , Dolor Crónico , Neuralgia , Humanos , Ansiedad , Tálamo , Trastornos de Ansiedad , Enfermedad Crónica
9.
Brain Res Bull ; 205: 110837, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38043647

RESUMEN

Neuroimaging research has revealed significant changes in brain structure and function in patients with cervical spondylotic myelopathy(CSM). The thalamus plays a crucial role in this process, although its mechanisms of action remain incompletely understood. This study aimed to investigate whether spinal cord compression leads to alterations in the functional connectivity between the thalamus and the cerebral cortex, and to determine if such changes are associated with structural and functional remodeling of the brain in patients with CSM, and to identify potential neuroimaging biomarkers for classification. The study included 40 patients with CSM and 34 healthy controls(HCs) who underwent resting-state functional magnetic resonance imaging(fMRI) and structural MRI scans. Brain structural and functional metrics were quantified using functional connectivity(FC), fractional amplitude of low-frequency fluctuations(fALFF), surface-based morphometry(SBM), and independent component analysis(ICA) based on functional and structural MRI. Patients with CSM exhibited significantly reduced fALFF in the bilateral lateral lingual gyrus, bilateral calcarine fissure, left precentral gyrus and postcentral gyrus, left middle and superior occipital gyrus, left superior marginal gyrus, left inferior parietal gyrus, and right Rolandic operculum. ICA results revealed weakened functional connectivity between the sensorimotor network (SMN) and the left and right frontoparietal network(FPN), and lateral visual network (lVN), along with decreased connectivity between lVN and rFPN, and increased connectivity between lFPN and rFPN. Patients with CSM also had decreased sulcus depth in the bilateral insula, left precentral and postcentral gyrus, and right lingual gyrus and calcarine fissure. Furthermore, cervical spondylotic myelopathy patients showed decreased functional connectivity between the left ventral posterolateral nucleus (VPL) of the thalamus and the right middle occipital gyrus (MOG). Finally,multimodal neuroimaging with support vector machine(SVM) classified patients with CSM and healthy controls with 86.00% accuracy. Our study revealed that the decrease in functional connectivity between the thalamus and cortex mediated by spinal cord compression leads to structural and functional reorganization of the cortex. Features based on neuroimaging markers have the potential to become neuroimaging biomarkers for CSM.


Asunto(s)
Compresión de la Médula Espinal , Enfermedades de la Médula Espinal , Humanos , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tálamo/diagnóstico por imagen , Biomarcadores
10.
Planta ; 259(1): 6, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38001306

RESUMEN

MAIN CONCLUSION: Rpf107 is involved in the infection process of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The LURP-one related (LOR) protein family plays a pivotal role in mediating plant defense responses against both biotic and abiotic stresses. However, our understanding of its function in the symbiotic interaction between legumes and rhizobia remains limited. Here, Rpf107, a homolog of LOR, was identified in Robinia pseudoacacia (black locust). The subcellular localization of Rpf107 was analyzed, and its function was investigated using RNA interference (RNAi) and overexpression techniques. The subcellular localization assay revealed that Rpf107 was mainly distributed in the plasma membrane and nucleus. Rpf107 silencing prevented rhizobial infection and hampered plant growth. The number of infected cells in the nitrogen fixation zone of the Rpf107-RNAi nodules was also noticeably lower than that in the control nodules. Notably, Rpf107 silencing resulted in bacteroid degradation and the premature aging of nodules. In contrast, the overexpression of Rpf107 delayed the senescence of nodules and prolonged the nitrogen-fixing ability of nodules. These results demonstrate that Rpf107 was involved in the infection of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The findings reveal that a member of the LOR protein family plays a role in leguminous root nodule symbiosis, which is helpful to clarify the functions of plant LOR protein family and fully understand the molecular mechanisms underlying legume-rhizobium symbiosis.


Asunto(s)
Fabaceae , Rhizobium , Robinia , Robinia/genética , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/genética , Genes vif , Fijación del Nitrógeno/genética , Rhizobium/fisiología , Fabaceae/genética , Proteínas de Plantas/metabolismo
11.
Pulm Circ ; 13(4): e12295, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37808899

RESUMEN

LHQK is a patented Traditional Chinese Medicine (TCM) which is clinically used for acute tracheobronchitis, cough, and other respiratory diseases. Recent studies have proved that LHQK exhibits excellent clinical efficacy in the treatment of acute lung injury (ALI). However, the corresponding mechanisms remain largely unexplored. In this study, we investigated the effects and the underlying mechanisms of LHQK on lipopolysaccharide (LPS)-induced ALI in mice. The pathological examination, inflammatory cytokines assessments, and mucus secretion evaluation indicated that administration of LHQK ameliorated LPS-induced lung injury, and suppressed the secretion of Muc5AC and pro-inflammatory cytokines (IL-6, TNF-α, and IL-1ß) in plasma and BALF. Furthermore, the results of cell-free DNA level showed that LHQK significantly inhibited LPS-induced NETs formation. Western blot revealed that LHQK effectively inhibited LPS-triggered pyroptosis in the lung. In addition, RNA-Seq data analysis, relatively bioinformatic analysis, and network pharmacology analysis revealed that LHQK and relative components may play multiple protective functions in LPS-induced ALI/acute respiratory distress syndrome (ARDS) by regulating multiple targets directly or indirectly related to NETs and pyroptosis. In conclusion, LHQK can effectively attenuate lung injury and reduce lung inflammation by inhibiting LPS-induced NETs formation and pyroptosis, which may be regulated directly or indirectly by active compounds of LHQK.

12.
Biomed Pharmacother ; 166: 115437, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37677966

RESUMEN

Polyphenols have been widely used to treat various chronic skin diseases because they are beneficial in wound healing and show anti-inflammatory effects, however, the mechanism of action remains ambiguous. Previously, we reported the wound healing capability of tea polyphenols (TPP), the major functional component of tea, in vivo. The current study aimed to address the mechanisms of TPP in wound healing during different phases (inflammation, proliferation and remodeling). During the inflammation phase, TPP reduced the production of proinflammatory cytokines (IL-1ß, IL-6 and TNF-α) and inhibited infiltration of neutrophils; during the proliferation phase, TPP promoted the expression of growth factor VEGF-A, which can promote vascular endothelial cell division and induce angiogenesis; TPP improved the morphology of the wound and restored the ratio of type III/I collagens during the remodeling phase, as determined by Masson-trichrome staining and Sirius red staining assays. By tracking the changes in the wound area, TPP and recombinant human epidermal growth factor (rhEGF), rather than povidone-iodine (PVP-I), were able to promote wound healing. These results suggest that TPP plays a pivotal role in all the key stages of wound healing and displays distinct mechanisms from rhEGF, suggesting clinical significance for the future application of TPP as a natural wound healing agent.


Asunto(s)
Bioensayo , Relevancia Clínica , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Colágeno Tipo I , Colágeno Tipo III , Factor de Crecimiento Epidérmico , Inflamación ,
13.
Molecules ; 28(9)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37175254

RESUMEN

L-theanine (N-ethyl-γ-glutamine) is the main amino acid in tea leaves. It not only contributes to tea flavor but also possesses several health benefits. Compared with its sedative and calming activities, the immunomodulatory effects of L-theanine have received less attention. Clinical and epidemiological studies have shown that L-theanine reduces immunosuppression caused by strenuous exercise and prevents colds and influenza by improving immunity. Numerous cell and animal studies have proven that theanine plays an immunoregulatory role in inflammation, nerve damage, the intestinal tract, and tumors by regulating γδT lymphocyte function, glutathione (GSH) synthesis, and the secretion of cytokines and neurotransmitters. In addition, theanine can be used as an immunomodulator in animal production. This article reviews the research progress of L-theanine on immunoregulation and related mechanisms, as well as its application in poultry and animal husbandry. It is hoped that this work will be beneficial to future related research.


Asunto(s)
Citocinas , Glutamatos , Animales , Glutamatos/química , Inmunidad , Té/química
14.
Chin J Nat Med ; 21(5): 371-382, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37245875

RESUMEN

This study aimed to investigate the effect and mechanisms of Ephedra Herb (EH) extract on adriamycin-induced nephrotic syndrome (NS), providing an experimental basis for the clinical treatment of NS. Hematoxylin and eosin staining, creatinine, urea nitrogen, and kidn injury molecule-1 were used to evaluate the activities of EH extract on renal function. The levels of inflammatory factors and oxidative stress were detected by kits. The levels of reactive oxygen species, immune cells, and apoptosis were measured by flow cytometry. A network pharmacological approach was used to predict the potential targets and mechanisms of EH extract in the treatment of NS. The protein levels of apoptosis-related proteins and CAMKK2, p-CAMKK2, AMPK, p-AMPK, mTOR and p-mTOR in the kidneys were detected by Western blot. The effective material basis of EH extract was screened by MTT assay. The AMPK pathway inhibitor (compound C, CC) was added to investigate the effect of the potent material basis on adriamycin-induced cell injury. EH extract significantly improved renal injury and relieve inflammation, oxidative stress, and apoptosis in rats. Network pharmacology and Western blot results showed that the effect of EH extract on NS may be associated with the CAMKK2/AMPK/mTOR signaling pathway. Moreover, methylephedrine significantly ameliorated adriamycin-induced NRK-52e cell injury. Methylephedrine also significantly improved the phosphorylation of AMPK and mTOR, which were blocked by CC. In sum, EH extract may ameliorate renal injury via the CAMKK2/AMPK/mTOR signaling pathway. Moreover, methylephedrine may be one of the material bases of EH extract.


Asunto(s)
Doxorrubicina , Síndrome Nefrótico , Ratas , Animales , Doxorrubicina/efectos adversos , Proteínas Quinasas Activadas por AMP/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis
15.
Front Aging Neurosci ; 15: 1104269, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37009463

RESUMEN

Cognitive impairment (CI), mainly Alzheimer's disease (AD), continues to increase in prevalence and is emerging as one of the major health problems in society. However, until now, there are no first-line therapeutic agents for the allopathic treatment or reversal of the disease course. Therefore, the development of therapeutic modalities or drugs that are effective, easy to use, and suitable for long-term administration is important for the treatment of CI such as AD. Essential oils (EOs) extracted from natural herbs have a wide range of pharmacological components, low toxicity, and wide sources, In this review, we list the history of using volatile oils against cognitive disorders in several countries, summarize EOs and monomeric components with cognitive improvement effects, and find that they mainly act by attenuating the neurotoxicity of amyloid beta, anti-oxidative stress, modulating the central cholinergic system, and improving microglia-mediated neuroinflammation. And combined with aromatherapy, the unique advantages and potential of natural EOs in the treatment of AD and other disorders were discussed. This review hopes to provide scientific basis and new ideas for the development and application of natural medicine EOs in the treatment of CI.

16.
Integr Cancer Ther ; 22: 15347354231164621, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37029546

RESUMEN

Doxorubicin (Dox) is a first-line chemotherapeutic agent applied in cancer treatment. Its long-term anticancer efficacy is restricted mainly due to its subsequent cardiotoxicity for patients. Platycodon grandiflorum (PG), an important traditional Chinese herb, has been reported to eliminate phlegm, relieve cough, and reduce inflammatory diseases. Previous clinical studies found that PG has cardioprotective effects for early breast cancer patients who received Dox-based chemotherapy. However, the cellular and molecular mechanisms underlying PG-mediated cardiotoxic rescue remain elusive. This study aimed to explore the protective role and potential molecular mechanisms of PG on Dox-induced cardiac dysfunction in a mouse model of breast cancer. PG significantly alleviated myocardial damage and prevented cardiomyocyte apoptosis induced by Dox. The expression levels of cytochrome C and cleaved caspase-3 significantly decreased, and the levels of Bcl-XL and B-cell lymphoma-2 (Bcl-2)/Bcl-2-associated X protein increased following PG treatment. Furthermore, PG remarkably enhanced the antimetastatic efficacy (versus the Dox group) by regulating the balance of matrix metalloproteinases/tissue inhibitors of metalloproteinases.


Asunto(s)
Antineoplásicos , Cardiopatías , Neoplasias , Platycodon , Ratones , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/prevención & control , Cardiotoxicidad/metabolismo , Doxorrubicina/efectos adversos , Antineoplásicos/farmacología , Cardiopatías/inducido químicamente , Apoptosis , Miocitos Cardíacos/metabolismo , Neoplasias/metabolismo
17.
Food Chem Toxicol ; 175: 113723, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36935074

RESUMEN

The essential oils of Ligusticum chuanxiong Hort. (CXEO) are considered to be important parts of the pharmacological action of Ligusticum chuanxiong Hort. CXEO have a wide range of applications in various fields. Despite the interesting properties of CXEO, the volatility and low solubility have limited the application. Liposomes are vesicles composed of concentric bilayer lipids arranged around the water environment. Therefore, this study aimed to prepare stable CXEO liposomes (CXEO-LP) to improve the properties. Then, CXEO-LP were prepared by thin film dispersion method and optimized. The results showed that CXEO-LP were well dispersed. Subsequently, in vitro release and antioxidant properties of CXEO-LP were researched. CXEO-LP had slow release effect and oxidation resistance, indicating CXEO-LP may be a potential drug for treating cerebral ischemia-reperfusion injury (CIRI). The nasal mucosa toxicity test and acute toxicity test showed that CXEO-LP had no obvious toxicity to nasal cavity, heart, liver, spleen, lung and kidney tissues. Pharmacodynamic studies found that CXEO-LP significantly improved neurological deficits and brain pathology in a mouse model of CIRI compared to CXEO after intranasal administration. In general, this study showed that CXEO-LP were easy to prepare and continuously released, and had an important development prospect in the treatment of CIRI.


Asunto(s)
Medicamentos Herbarios Chinos , Ligusticum , Aceites Volátiles , Daño por Reperfusión , Ratones , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Liposomas , Medicamentos Herbarios Chinos/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico
18.
Biotechnol Genet Eng Rev ; : 1-20, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36960758

RESUMEN

As an effective formula of traditional Chinese medicine, Yang-Gan-Jiang-Mei (YGJM) formula exhibited a unique advantage in ameliorating liver injury and hepatic steatosis of non-alcoholic steatohepatitis (NASH). Nevertheless, the related pharmacological mechanism needs to be elucidated. This study aimed to explore the molecular mechanism of YGJM formula on mitophagy mediated by PINK1/parkin signaling pathway and NOD-like receptor protein 3 (NLRP3) inflammasome in NASH. High-fat-diet rats and HepG2 cells induced by free fatty acid were used as NASH models in vivo and in vitro. Liver pathology and serum indicator embodying liver function (aspartate transferase, alanine transferase, triglyceride, and total cholesterol) were applied to evaluate the extent of hepatic damage and lipid accumulation. Besides, transmission electron microscopy, JC-1 and 2',7'-dichlorofluorescein diacetate were utilized to observe hepatic mitochondrial morphology, as well as cellular mitochondrial membrane potential and reactive oxygen species level. Additionally, expression of PINK1/parkin-mediated mitophagy and NLRP3 inflammasome was detected to elucidate the underlying mechanism of YGJM formula by immunohistochemistry, immunofluorescence, RT-PCR (reverse transcription-polymerase chain reaction) and Western blot. The manifestations of pathology and biochemical detection confirmed the efficacy of YGJM formula in relieving hepatic damage and lipid deposition. Simultaneously, YGJM formula could obviously improve mitochondrial function. In addition, YGJM formula exhibited the promotion of PINK1/parkin-mediated mitophagy, which could perturb NLRP3 inflammasome activation, and as a result, the hepatocyte inflammation was also suppressed both in vitro and in vivo. Our preliminary results indicate that YGJM formula can ameliorate NASH mechanistically by interfering with PINK1/parkin-mediated mitophagy and NLRP3 inflammasome to exert anti-inflammation ability and promote mitochondrial function restoration.

19.
Water Res ; 231: 119658, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36708629

RESUMEN

Wet-chemical approach is widely applied for phosphate recovery from incinerated ash of waste activated sludge (WAS), along with metals removed/recovered. The high contents of both aluminum (Al) and iron (Fe) in WAS-incinerated ash should be suitable for producing coagulants with some waste anions like Cl- and SO42- With acid (HCl) leaching and metals' removing, approximately 88 wt% of phosphorus (P) in the ash could be recovered as hydroxylapatite (HAP: Ca5(PO4)3OH); Fe3+ in the acidic leachate could be selectively removed/recovered by extraction with an organic solvent of tributyl phosphate (TBP), and thus a FeCl3-based coagulant could be synthesized by stripping the raffinate with the original brine (containing abundant Cl- and SO42-). Furthermore, a liquid poly-aluminum chloride (PAC)-based coagulant could also be synthesized with Al3+ removed from the ash and the brine, which behaved almost the same in the coagulation performance as a commercial coagulant on both phosphate and turbidity removals. Both P-recovery from the ash and coagulant production associated with the brine would enlarge the markets of both 'blue' phosphate and 'green' coagulants.


Asunto(s)
Fosfatos , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Fósforo/química , Metales/química , Aluminio/química , Incineración , Ceniza del Carbón
20.
Behav Brain Res ; 440: 114264, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36535434

RESUMEN

Corallodiscus flabellata B. L. Burtt (CF) is a Chinese folk herb with reported potential for the treatment of Alzheimer's disease (AD). 3,4-Dihydroxyphenylethanol-8-O-[4-O-trans-caffeoyl-ß-D-apiofuranosyl-(1→3)-ß-D-glucopyranosyl (1→6)][1]-ß-D-glucopyranoside (SDC-1-8) and hydroxytyrosol (HT) are two polyphenolic compounds isolated from CF. The aim of this study was to investigate the protective effects of SDC-1-8 and HT on an Aß25-35-induced AD model and to study the underlying mechanism. The AD mouse model was established using a brain injection of amyloid ß-protein 25-35 (Aß25-35, 200 µM), followed by continuous administration of SDC-1-8 and HT for 4 weeks, and found that they improved cognitive dysfunction; ameliorated neuronal damage and apoptosis; decreased oxidative stress, and mitochondrial fission protein levels; and increased mitochondrial fusion protein levels in AD mice. Moreover, SDC-1-8 and HT inhibited mitochondrial membrane depolarization, reduced intracellular stored Ca2+ levels, enhanced mitochondrial respiration, increased mitochondrial fusion, and decreased mitochondrial division in Aß25-35-induced PC12 cells even in the presence of mdivi-1. Furthermore, molecular docking simulations showed that SDC-1-8 and HT interacted with dynamin-related protein 1 with higher affinity than mitofusin 1. Thus, it is summarized that SDC-1-8 and HT may have neuroprotective effects by balancing the abnormalities of mitochondrial fission and fusion, and SDC-1-8 and HT are the components providing the therapeutic basis of CF.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratas , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Polifenoles/farmacología , Polifenoles/uso terapéutico , Simulación del Acoplamiento Molecular , Apoptosis , Fragmentos de Péptidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA