Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 9(5): e15992, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37215864

RESUMEN

Non-thermal plasma (NTP) is thought to have a cytotoxic effect on tumor cells. Although its application in cancer therapy has shown considerable promise, the current understanding of its mechanism of action and cellular responses remains incomplete. Furthermore, the use of melatonin (MEL) as an adjuvant anticancer drug remains unexplored. In this study, we found that NTP assists MEL in promoting apoptosis, delaying cell cycle progression, and inhibiting cell invasion and migration in hepatocellular carcinoma (HCC) cells. This mechanism may be associated with the regulation of intracellular reactive oxygen species levels and ribonucleotide reductase regulatory subunit M2 expression. Our findings confirm the pharmacological role of MEL and the adjuvant value of NTP, emphasizing their potential in combination therapy for HCC. Our study may have important implications for the development of new approaches for HCC treatment.

2.
Bioelectromagnetics ; 44(5-6): 107-118, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37186397

RESUMEN

Macrophage polarization plays an important role in many macrophage-related diseases. This study was designed to preliminarily explore the effects of dielectric barrier discharge (DBD) plasma on the polarization direction and cell activity of macrophages with different phenotypes (ie, M0, M1, and M2). The M1 macrophage marker inducible nitric oxide synthase (iNOS) and M2 macrophage marker cluster of differentiation 206 (CD206) were detected by western blot (WB). The effects of DBD plasma on macrophage viability were analyzed by using a cell counting kit-8 detection kit. M0, M1, and M2 macrophages exhibited a decrease in iNOS expression and an increase in CD206 expression after the DBD plasma intervention. Additionally, the decrease in macrophage viability remained non-significant after initiating the intervention. DBD plasma can promote the transformation of M0 and M1 macrophages to M2 macrophages, and can further enhance the expression of the M2 macrophage phenotype marker CD206. Our study not only demonstrates the potential therapeutic value of DBD plasma for macrophage-related diseases, but it also provides a new direction for research to improve the treatment of macrophage-related diseases. © 2023 Bioelectromagnetics Society.


Asunto(s)
Macrófagos , Receptor de Manosa
3.
Front Nutr ; 8: 735742, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765630

RESUMEN

Radix paeoniae alba (RPA) is a kind of herbal medicine of traditional Chinese medicine (TCM) that is widely used for the treatment of liver diseases and rheumatoid arthritis in clinical practice. As a result of the low extraction efficiency of RPA by the conventional method, many patients are given high dosages. In this study, four exposure doses of dielectric barrier discharge (DBD) plasma (0, 60, 120, and 180 s) were applied to modify the extraction efficiency of paeoniflorin, benzoylpaeoniflorin, tannic acid, gallic acid, 2'-hydroxy-4'-methoxyacetophenone, and polysaccharide in RPA. Finally, the application of plasma for 180 s exhibited a 24.6% and 12.0% (p < 0.001) increase of tannic acid and polysaccharide contents, however, a 2.1% (p < 0.05) and 5.4% (p < 0.001) reduction of paeoniflorin and gallic acid composition, respectively, and no significant difference (p > 0.05) in results obtained from benzoylpaeoniflorin and 2'-hydroxy-4'-methoxyacetophenone contents. Our results of scanning electron microscopy (SEM), automatic specific surface area and pore analyzer, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) indicated that DBD plasma can etch the surface and undergo graft polymerization by reactive species thereby changing the water/oil holding capacity and eventually changing the extraction efficiency of bioactive compounds in RPA. Overall, our observations provide a scientific foundation for modifying the extraction efficiency of bioactive ingredients related to the pharmacological activities of RPA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA