Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Pollut Bull ; 145: 316-324, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31590793

RESUMEN

In 2020, the global cap of maximum allowable sulphur content in marine fuel will be reduced from the current 3.5% to 0.5%. Another way to reduce the sulphur emissions is to install a seawater scrubber that cleans exhausts but instead release acidic water containing nutrients and contaminants back to the marine environment. In the current study, scrubber washwater was tested on a Baltic Sea microplankton community. A significant increase in chlorophyll a, particulate organic phosphorus (POP), carbon (POC) and nitrogen (PON) were observed when the community was exposed to 10% scrubber washwater for 13 days as compared to the control. A laboratory experiment with the filamentous cyanobacteria Nodularia spumigena and the chain-forming diatom Melosira cf. arctica showed negative responses in photosynthetic activity (EC10 = 8.6% for N. spumigena) and increased primary productivity (EC10 = 5.5% for M. cf. arctica), implying species-specific responses to scrubber washwater discharge.


Asunto(s)
Plancton/efectos de los fármacos , Agua de Mar/microbiología , Emisiones de Vehículos/prevención & control , Contaminación del Agua/prevención & control , Países Bálticos , Clorofila A/análisis , Cianobacterias/efectos de los fármacos , Nitrógeno/análisis , Nodularia/efectos de los fármacos , Fósforo/análisis , Fotosíntesis/efectos de los fármacos , Navíos , Azufre/toxicidad , Emisiones de Vehículos/toxicidad
2.
Physiol Plant ; 146(2): 205-16, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22420775

RESUMEN

The invasive success of Gracilaria vermiculophylla has been attributed to its wide tolerance range to different abiotic factors, but its response to ultraviolet radiation (UVR) is yet to be investigated. In the laboratory, carpospores and vegetative thalli of an Atlantic population were exposed to different radiation treatments consisting of high PAR (photosynthetically active radiation) only (P), PAR+UV-A (PA) and PAR+UV-A+UV-B (PAB). Photosynthesis of carpospores was photoinhibited under different radiation treatments but photosystem II (PSII) function was restored after 12 h under dim white light. Growth of vegetative thalli was significantly higher under radiation supplemented with UVR. Decrease in chlorophyll a (Chl a) under daily continuous 16-h exposure to 300 µmol photons m(-2) s(-1) of PAR suggests preventive accumulation of excited chlorophyll molecules within the antennae to minimize the generation of dangerous reactive oxygen species. Moreover, an increase in total carotenoids and xanthophyll cycle pigments (i.e. violaxanthin, antheraxanthin and zeaxanthin) further suggests effective photoprotection under UVR. The presence of the ketocarotenoid ß-cryptoxanthin also indicates protection against UVR and oxidative stress. The initial concentration of total mycosporine-like amino acids (MAAs) in freshly-released spores increased approximately four times after 8-h laboratory radiation treatments. On the other hand, initial specific MAAs in vegetative thalli changed in composition after 7-day exposure to laboratory radiation conditions without affecting the total concentration. The above responses suggest that G. vermiculophylla have multiple UVR defense mechanisms to cope with the dynamic variation in light quantity and quality encountered in its habitat. Beside being eurytopic, the UVR photoprotective mechanisms likely contribute to the current invasive success of the species in shallow lagoons and estuaries exposed to high solar radiation.


Asunto(s)
Gracilaria/crecimiento & desarrollo , Gracilaria/efectos de la radiación , Fotosíntesis/efectos de la radiación , Esporas/efectos de la radiación , Rayos Ultravioleta , Adaptación Fisiológica , Clorofila/metabolismo , Especies Introducidas , Estrés Fisiológico , Luz Solar , Xantófilas/metabolismo
3.
Microb Ecol ; 57(4): 675-86, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-18709402

RESUMEN

Nodularia spumigena is one of the dominating species during the extensive cyanobacterial blooms in the Baltic Sea. The blooms coincide with strong light, stable stratification, low ratios of dissolved inorganic nitrogen, and dissolved inorganic phosphorus. The ability of nitrogen fixation, a high tolerance to phosphorus starvation, and different photo-protective strategies (production of mycosporine-like amino acids, MAAs) may give N. spumigena a competitive advantage over other phytoplankton during the blooms. To elucidate the interactive effects of ambient UV radiation and nutrient limitation on the performance of N. spumigena, an outdoor experiment was designed. Two radiation treatments photosynthetic active radiation (PAR) and PAR +UV-A + UV-B (PAB) and three nutrient treatments were established: nutrient replete (NP), nitrogen limited (-N), and phosphorus limited (-P). Variables measured were specific growth rate, heterocyst frequency, cell volume, cell concentrations of MAAs, photosynthetic pigments, particulate carbon (POC), particulate nitrogen (PON), and particulate phosphorus (POP). Ratios of particulate organic matter were calculated: POC/PON, POC/POP, and PON/POP. There was no interactive effect between radiation and nutrient limitation on the specific growth rate of N. spumigena, but there was an overall effect of phosphorus limitation on the variables measured. Interaction effects were observed for some variables; cell size (larger cells in -P PAB compared to other treatments) and the carotenoid canthaxanthin (highest concentration in -N PAR). In addition, significantly less POC and PON (mol cell(-1)) were found in -P PAR compared to -P PAB, and the opposite radiation effect was observed in -N. Our study shows that despite interactive effects on some of the variables studied, N. spumigena tolerate high ambient UVR also under nutrient limiting conditions and maintain positive growth rate even under severe phosphorus limitation.


Asunto(s)
Eutrofización , Nodularia/metabolismo , Nodularia/efectos de la radiación , Rayos Ultravioleta , Microbiología del Agua , Aminoácidos/metabolismo , Cantaxantina/metabolismo , Nitrógeno/metabolismo , Nodularia/crecimiento & desarrollo , Fósforo/metabolismo , Fotosíntesis , Agua de Mar/microbiología
4.
FEMS Microbiol Ecol ; 66(2): 230-42, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18754779

RESUMEN

Biomass of N. spumigena is distributed within the dynamic photic zone that changes in both light quantity and quality. This study was designed to determine whether nutrient status can mitigate the negative impacts of experimental radiation treatments on the photosynthetic performance of N. spumigena. Cyanobacterial suspensions were exposed to radiation consisting of photosynthetically active radiation (PAR=400-700 nm), PAR+UV-A (=PA, 320-700 nm), and PAR+UV-A+UV-B (=PAB, 280-700 nm) under different nutrient media either replete with external dissolved nitrate (N) and orthophosphate (P; designated as +N/+P), replete with P only (-N/+P), or replete with N only (+N/-P). Under low PAR (75 micromol photons m(-2) s(-1)), nutrient status had no significant effect on the photosynthetic performance of N. spumigena in terms of rETRmax, alpha, and E(k). Nodularia spumigena was able to acclimate to high PAR (300 micromol photons m(-2) s(-1)), with a corresponding increase in rETRmax and E(k). The photosynthetic performance of N. spumigena cultured with supplemental nitrogen was more susceptible to experimental PAR irradiance. Under UVR, P-enrichment in the absence of additional external N (-N/+P) induced lower photoinhibition of photosynthesis compared with +N/-P cultures. However, the induction of NPQ may have provided PSII protection under P-deplete and PAR+UVR conditions. Because N. spumigena are able to fix nitrogen, access to available P can render them less susceptible to photoinhibition, effectively promoting blooms. Under a P-deficient condition, N. spumigena were more susceptible to radiation but were capable of photosynthetic recovery immediately after removal of radiation stress. In the presence of an internal P pool in the Baltic Sea, which may be seasonally available to the diazotrophic cyanobacteria, summer blooms of the resilient N. spumigena will persist.


Asunto(s)
Nitrógeno/metabolismo , Nodularia/fisiología , Fósforo/metabolismo , Fotosíntesis , Rayos Ultravioleta , Clorofila/metabolismo , Medios de Cultivo , Fijación del Nitrógeno , Nodularia/crecimiento & desarrollo , Nodularia/aislamiento & purificación , Nodularia/efectos de la radiación , Fotosíntesis/fisiología , Fotosíntesis/efectos de la radiación , Agua de Mar/química , Agua de Mar/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA