Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Sports Sci ; 40(10): 1149-1157, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35301929

RESUMEN

Dietary nitrate (NO3-) supplementation can reduce the oxygen cost of submaximal exercise, but this has not been reported consistently. We hypothesised that the number of step transitions to moderate-intensity exercise, and corresponding effects on the signal-to-noise ratio for pulmonary V˙ O2, may be important in this regard. Twelve recreationally active participants were assigned in a randomised, double-blind, crossover design to supplement for 4 days in three conditions: 1) control (CON; water); 2); PL (NO3--depleted beetroot juice); and 3) BR (NO3--rich beetroot juice). On days 3 and 4, participants completed two 6-min step transitions to moderate-intensity cycle exercise. Breath-by-breath V˙ O2 data were collected and V˙ O2 kinetic responses were determined for a single transition and when the responses to 2, 3 and 4 transitions were ensemble-averaged. Steady-state V˙ O2 was not different between PL and BR when the V˙ O2 response to one-, two- or three-step transition was compared but was significantly lower in BR compared to PL when four-step transitions was considered (PL: 1.33 ± 0.34 vs. BR: 1.31 ± 0.34 L·min-1, P < 0.05). There were no differences in pulmonary V˙ O2 responses between CON and PL (P > 0.05). Multiple step transitions may be required to detect the influence of NO3- supplementation on steady-state V˙ O2.


Asunto(s)
Beta vulgaris , Nitratos , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Tolerancia al Ejercicio/fisiología , Humanos , Nitritos , Oxígeno , Consumo de Oxígeno/fisiología , Intercambio Gaseoso Pulmonar
2.
Nitric Oxide ; 121: 1-10, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35032643

RESUMEN

Dietary nitrate (NO3-) ingestion can be beneficial for health and exercise performance. Recently, based on animal and limited human studies, a skeletal muscle NO3- reservoir has been suggested to be important in whole body nitric oxide (NO) homeostasis. The purpose of this study was to determine the time course of changes in human skeletal muscle NO3- concentration ([NO3-]) following the ingestion of dietary NO3-. Sixteen participants were allocated to either an experimental group (NIT: n = 11) which consumed a bolus of ∼1300 mg (12.8 mmol) potassium nitrate (KNO3), or a placebo group (PLA: n = 5) which consumed a bolus of potassium chloride (KCl). Biological samples (muscle (vastus lateralis), blood, saliva and urine) were collected shortly before NIT or PLA ingestion and at intervals over the course of the subsequent 24 h. At baseline, no differences were observed for muscle [NO3-] and [NO2-] between NIT and PLA (P > 0.05). In PLA, there were no changes in muscle [NO3-] or [NO2-] over time. In NIT, muscle [NO3-] was significantly elevated above baseline (54 ± 29 nmol/g) at 0.5 h, reached a peak at 3 h (181 ± 128 nmol/g), and was not different to baseline from 9 h onwards (P > 0.05). Muscle [NO2-] did not change significantly over time. Following ingestion of a bolus of dietary NO3-, skeletal muscle [NO3-] increases rapidly, reaches a peak at ∼3 h and subsequently declines towards baseline values. Following dietary NO3- ingestion, human m. vastus lateralis [NO3-] expressed a slightly delayed pharmacokinetic profile compared to plasma [NO3-].


Asunto(s)
Músculo Esquelético/química , Nitratos/análisis , Nitritos/análisis , Adulto , Suplementos Dietéticos , Femenino , Humanos , Masculino , Nitratos/administración & dosificación , Factores de Tiempo , Adulto Joven
3.
Redox Biol ; 43: 101974, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33940546

RESUMEN

Ingested inorganic nitrate (NO3⁻) has multiple effects in the human body including vasodilation, inhibition of platelet aggregation, and improved skeletal muscle function. The functional effects of oral NO3⁻ involve the in vivo reduction of NO3⁻ to nitrite (NO2⁻) and thence to nitric oxide (NO). However, the potential involvement of S-nitrosothiol (RSNO) formation is unclear. We hypothesised that the RSNO concentration ([RSNO]) in red blood cells (RBCs) and plasma is increased by NO3⁻-rich beetroot juice ingestion. In healthy human volunteers, we tested the effect of dietary supplementation with NO3⁻-rich beetroot juice (BR) or NO3⁻-depleted beetroot juice (placebo; PL) on [RSNO], [NO3⁻] and [NO2⁻] in RBCs, whole blood and plasma, as measured by ozone-based chemiluminescence. The median basal [RSNO] in plasma samples (n = 22) was 10 (5-13) nM (interquartile range in brackets). In comparison, the median values for basal [RSNO] in the corresponding RBC preparations (n = 19) and whole blood samples (n = 19) were higher (p < 0.001) than in plasma, being 40 (30-60) nM and 35 (25-80) nM, respectively. The median RBC [RSNO] in a separate cohort of healthy subjects (n = 5) was increased to 110 (93-125) nM after ingesting BR (12.8 mmol NO3⁻) compared to a corresponding baseline value of 25 (21-31) nM (Mann-Whitney test, p < 0.01). The median plasma [RSNO] in another cohort of healthy subjects (n = 14) was increased almost ten-fold to 104 (58-151) nM after BR supplementation (7 × 6.4 mmol of NO3⁻ over two days, p < 0.01) compared to PL. In conclusion, RBC and plasma [RSNO] are increased by BR ingestion. In addition to NO2⁻, RSNO may be involved in dietary NO3⁻ metabolism/actions.


Asunto(s)
Beta vulgaris , S-Nitrosotioles , Presión Sanguínea , Estudios Cruzados , Suplementos Dietéticos , Ingestión de Alimentos , Humanos , Nitratos , Nitritos
4.
Nitric Oxide ; 99: 25-33, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32272260

RESUMEN

We tested the hypothesis that acute supplementation with nitrate (NO3-)-rich beetroot juice (BR) would improve quadriceps muscle oxygenation, pulmonary oxygen uptake (V˙O2) kinetics and exercise tolerance (Tlim) in normoxia and that these improvements would be augmented in hypoxia and attenuated in hyperoxia. In a randomised, double-blind, cross-over study, ten healthy males completed two-step cycle tests to Tlim following acute consumption of 210 mL BR (18.6 mmol NO3-) or NO3--depleted beetroot juice placebo (PL; 0.12 mmol NO3-). These tests were completed in normobaric normoxia [fraction of inspired oxygen (FIO2): 21%], hypoxia (FIO2: 15%) and hyperoxia (FIO2: 40%). Pulmonary V˙O2 and quadriceps tissue oxygenation index (TOI), derived from multi-channel near-infrared spectroscopy, were measured during all trials. Plasma [nitrite] was higher in all BR compared to all PL trials (P < 0.05). Quadriceps TOI was higher in normoxia compared to hypoxia (P < 0.05) and higher in hyperoxia compared to hypoxia and normoxia (P < 0.05). Tlim was improved after BR compared to PL ingestion in the hypoxic trials (250 ± 44 vs. 231 ± 41 s; P = 0.006; d = 1.13), with the magnitude of improvement being negatively correlated with quadriceps TOI at Tlim (r = -0.78; P < 0.05). Tlim was not improved following BR ingestion in normoxia (BR: 364 ± 98 vs. PL: 344 ± 78 s; P = 0.087, d = 0.61) or hyperoxia (BR: 492 ± 212 vs. PL: 472 ± 196 s; P = 0.273, d = 0.37). BR ingestion increased peak V˙O2 in hypoxia (P < 0.05), but not normoxia or hyperoxia (P > 0.05). These findings indicate that BR supplementation is more likely to improve Tlim and peak V˙O2 in situations when skeletal muscle is more hypoxic.


Asunto(s)
Tolerancia al Ejercicio/efectos de los fármacos , Jugos de Frutas y Vegetales , Nitratos/farmacología , Consumo de Oxígeno/efectos de los fármacos , Oxígeno/metabolismo , Músculo Cuádriceps/metabolismo , Administración Oral , Adulto , Beta vulgaris/química , Estudios Cruzados , Método Doble Ciego , Humanos , Hipoxia/prevención & control , Cinética , Masculino , Nitratos/administración & dosificación , Nitritos/sangre , Músculo Cuádriceps/efectos de los fármacos , Adulto Joven
5.
J Physiol ; 597(23): 5565-5576, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31350908

RESUMEN

KEY POINTS: Nitric oxide (NO), a potent vasodilator and a regulator of many physiological processes, is produced in mammals both enzymatically and by reduction of nitrite and nitrate ions. We have previously reported that, in rodents, skeletal muscle serves as a nitrate reservoir, with nitrate levels greatly exceeding those in blood or other internal organs, and with nitrate being reduced to NO during exercise. In the current study, we show that nitrate concentration is substantially greater in skeletal muscle than in blood and is elevated further by dietary nitrate ingestion in human volunteers. We also show that high-intensity exercise results in a reduction in the skeletal muscle nitrate store following supplementation, likely as a consequence of its reduction to nitrite and NO. We also report the presence of sialin, a nitrate transporter, and xanthine oxidoreductase in human skeletal muscle, indicating that muscle has the necessary apparatus for nitrate transport, storage and metabolism. ABSTRACT: Rodent skeletal muscle contains a large store of nitrate that can be augmented by the consumption of dietary nitrate. This muscle nitrate reservoir has been found to be an important source of nitrite and nitric oxide (NO) via its reduction by tissue xanthine oxidoreductase. To explore if this pathway is also active in human skeletal muscle during exercise, and if it is sensitive to local nitrate availability, we assessed exercise-induced changes in muscle nitrate and nitrite concentrations in young healthy humans, under baseline conditions and following dietary nitrate consumption. We found that baseline nitrate and nitrite concentrations were far higher in muscle than in plasma (∼4-fold and ∼29-fold, respectively), and that the consumption of a single bolus of dietary nitrate (12.8 mmol) significantly elevated nitrate concentration in both plasma (∼19-fold) and muscle (∼5-fold). Consistent with these observations, and with previous suggestions of active muscle nitrate transport, we present western blot data to show significant expression of the active nitrate/nitrite transporter sialin in human skeletal muscle. Furthermore, we report an exercise-induced reduction in human muscle nitrate concentration (by ∼39%), but only in the presence of an increased muscle nitrate store. Our results indicate that human skeletal muscle nitrate stores are sensitive to dietary nitrate intake and may contribute to NO generation during exercise. Together, these findings suggest that skeletal muscle plays an important role in the transport, storage and metabolism of nitrate in humans.


Asunto(s)
Suplementos Dietéticos , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Nitratos/metabolismo , Adolescente , Adulto , Femenino , Humanos , Pulmón/metabolismo , Masculino , Nitratos/administración & dosificación , Nitratos/sangre , Nitritos/sangre , Nitritos/metabolismo , Transportadores de Anión Orgánico/metabolismo , Consumo de Oxígeno , Simportadores/metabolismo , Xantina Deshidrogenasa/metabolismo , Adulto Joven
6.
Eur J Sport Sci ; 19(1): 15-29, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29529987

RESUMEN

This article provides an overview of the current literature relating to the efficacy of dietary nitrate (NO3-) ingestion in altering aspects of cardiovascular and metabolic health and exercise capacity in healthy and diseased individuals. The consumption of NO3--rich vegetables, such as spinach and beetroot, have been variously shown to promote nitric oxide bioavailability, reduce systemic blood pressure, enhance tissue blood flow, modulate muscle O2 utilisation and improve exercise tolerance both in normoxia and in hypoxia, as is commonly observed in a number of disease states. NO3- ingestion may, therefore, act as a natural means for augmenting performance and attenuating complications associated with limited O2 availability or transport, hypertension and the metabolic syndrome. Recent studies indicate that dietary NO3- might also augment intrinsic skeletal muscle contractility and improve the speed and power of muscle contraction. Moreover, several investigations suggest that NO3- supplementation may improve aspects of cognitive performance both at rest and during exercise. Collectively, these observations position NO3- as more than a putative ergogenic aid and suggest that increasing natural dietary NO3- intake may act as a prophylactic in countering the predations of senescence and certain cardiovascular-metabolic diseases.


Asunto(s)
Dieta , Nitratos/administración & dosificación , Sustancias para Mejorar el Rendimiento/administración & dosificación , Presión Sanguínea , Cognición , Suplementos Dietéticos , Ejercicio Físico , Tolerancia al Ejercicio , Hemodinámica , Humanos , Hipertensión , Hipoxia , Síndrome Metabólico , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Óxido Nítrico/metabolismo , Flujo Sanguíneo Regional
7.
Annu Rev Nutr ; 38: 303-328, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30130468

RESUMEN

Nitric oxide (NO) plays a plethora of important roles in the human body. Insufficient production of NO (for example, during older age and in various disease conditions) can adversely impact health and physical performance. In addition to its endogenous production through the oxidation of l-arginine, NO can be formed nonenzymatically via the reduction of nitrate and nitrite, and the storage of these anions can be augmented by the consumption of nitrate-rich foodstuffs such as green leafy vegetables. Recent studies indicate that dietary nitrate supplementation, administered most commonly in the form of beetroot juice, can ( a) improve muscle efficiency by reducing the O2 cost of submaximal exercise and thereby improve endurance exercise performance and ( b) enhance skeletal muscle contractile function and thereby improve muscle power and sprint exercise performance. This review describes the physiological mechanisms potentially responsible for these effects, outlines the circumstances in which ergogenic effects are most likely to be evident, and discusses the effects of dietary nitrate supplementation on physical performance in a range of human populations.


Asunto(s)
Dieta , Nitratos/administración & dosificación , Óxido Nítrico/metabolismo , Ejercicio Físico/fisiología , Análisis de los Alimentos , Humanos
8.
J Appl Physiol (1985) ; 124(6): 1519-1528, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29494294

RESUMEN

The physiological and exercise performance adaptations to sprint interval training (SIT) may be modified by dietary nitrate ([Formula: see text]) supplementation. However, it is possible that different types of [Formula: see text] supplementation evoke divergent physiological and performance adaptations to SIT. The purpose of this study was to compare the effects of 4-wk SIT with and without concurrent dietary [Formula: see text] supplementation administered as either [Formula: see text]-rich beetroot juice (BR) or potassium [Formula: see text] (KNO3). Thirty recreationally active subjects completed a battery of exercise tests before and after a 4-wk intervention in which they were allocated to one of three groups: 1) SIT undertaken without dietary [Formula: see text] supplementation (SIT); 2) SIT accompanied by concurrent BR supplementation (SIT + BR); or 3) SIT accompanied by concurrent KNO3 supplementation (SIT + KNO3). During severe-intensity exercise, V̇o2peak and time to task failure were improved to a greater extent with SIT + BR than SIT and SIT + KNO3 ( P < 0.05). There was also a greater reduction in the accumulation of muscle lactate at 3 min of severe-intensity exercise in SIT + BR compared with SIT + KNO3 ( P < 0.05). Plasma [Formula: see text] concentration fell to a greater extent during severe-intensity exercise in SIT + BR compared with SIT and SIT + KNO3 ( P < 0.05). There were no differences between groups in the reduction in the muscle phosphocreatine recovery time constant from pre- to postintervention ( P > 0.05). These findings indicate that 4-wk SIT with concurrent BR supplementation results in greater exercise capacity adaptations compared with SIT alone and SIT with concurrent KNO3 supplementation. This may be the result of greater NO-mediated signaling in SIT + BR compared with SIT + KNO3. NEW & NOTEWORTHY We compared the influence of different forms of dietary nitrate supplementation on the physiological and performance adaptations to sprint interval training (SIT). Compared with SIT alone, supplementation with nitrate-rich beetroot juice, but not potassium [Formula: see text], enhanced some physiological adaptations to training.


Asunto(s)
Rendimiento Atlético , Beta vulgaris , Entrenamiento de Intervalos de Alta Intensidad , Músculo Esquelético/efectos de los fármacos , Nitratos/administración & dosificación , Compuestos de Potasio/administración & dosificación , Adulto , Suplementos Dietéticos , Sinergismo Farmacológico , Femenino , Humanos , Masculino , Adulto Joven
9.
J Appl Physiol (1985) ; 124(5): 1254-1263, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357494

RESUMEN

Nitrate-rich beetroot juice (BR) supplementation has been shown to increase biomarkers of nitric oxide availability with implications for the physiological responses to exercise. We hypothesized that BR supplementation before and during prolonged moderate-intensity exercise would maintain an elevated plasma nitrite concentration ([[Formula: see text]]), attenuate the expected progressive increase in V̇o2 over time, and improve performance in a subsequent time trial (TT). In a double-blind, randomized, crossover design, 12 men completed 2 h of moderate-intensity cycle exercise followed by a 100-kJ TT in three conditions: 1) BR before and 1 h into exercise (BR + BR); 2) BR before and placebo (PL) 1 h into exercise (BR + PL); and 3) PL before and 1 h into exercise (PL + PL). During the 2-h moderate-intensity exercise bout, plasma [[Formula: see text]] declined by ~17% in BR + PL but increased by ~8% in BR + BR such that, at 2 h, plasma [[Formula: see text]] was greater in BR + BR than both BR + PL and PL + PL ( P < 0.05). V̇o2 was not different among conditions over the first 90 min of exercise but was lower at 120 min in BR + BR (1.73 ± 0.24 l/min) compared with BR + PL (1.80 ± 0.21 l/min; P = 0.08) and PL + PL (1.83 ± 0.27 l/min; P < 0.01). The decline in muscle glycogen concentration over the 2-h exercise bout was attenuated in BR + BR (~28% decline) compared with BR + PL (~44% decline) and PL + PL (~44% decline; n = 9, P < 0.05). TT performance was not different among conditions ( P > 0.05). BR supplementation before and during prolonged moderate-intensity exercise attenuated the progressive rise in V̇o2 over time and appeared to reduce muscle glycogen depletion but did not enhance subsequent TT performance. NEW & NOTEWORTHY We show for the first time that ingestion of nitrate during exercise preserves elevated plasma [nitrite] and negates the progressive rise in O2 uptake during prolonged moderate-intensity exercise.


Asunto(s)
Beta vulgaris/química , Productos Biológicos/farmacología , Ejercicio Físico/fisiología , Nitritos/farmacología , Consumo de Oxígeno/efectos de los fármacos , Oxígeno/metabolismo , Adulto , Antioxidantes/farmacología , Bebidas , Presión Sanguínea/efectos de los fármacos , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Ingestión de Alimentos/fisiología , Tolerancia al Ejercicio/efectos de los fármacos , Humanos , Masculino , Óxido Nítrico/metabolismo , Consumo de Oxígeno/fisiología , Adulto Joven
10.
Nitric Oxide ; 72: 66-74, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29223585

RESUMEN

Inorganic nitrate (NO3-) supplementation has been shown to improve cardiovascular health indices in healthy adults. The purpose of this study was to investigate how the vehicle of NO3- administration can influence NO3- metabolism and the subsequent blood pressure response. Ten healthy males consumed an acute equimolar dose of NO3- (∼5.76 mmol) in the form of a concentrated beetroot juice drink (BR; 55 mL), a non-concentrated beetroot juice drink (BL; 456 mL) and a solid beetroot flapjack (BF; 60 g). A drink containing soluble beetroot crystals (BC; ∼1.40 mmol NO3-) and a control drink (CON; 70 mL deionised water) were also ingested. BP and plasma, salivary and urinary [NO3-] and [NO2-] were determined before and up to 24 h after ingestion. All NO3--rich vehicles elevated plasma, salivary and urinary nitric oxide metabolites compared with baseline and CON (P<0.05). The peak increases in plasma [NO2-] were greater in BF (371 ± 136 nM) and BR (369 ± 167 nM) compared to BL (283 ± 93 nM; all P<0.05) and BC (232 ± 51 nM). BR, but not BF, BL and BC, reduced systolic (∼5 mmHg) and mean arterial pressure (∼3-4 mmHg; P<0.05), whereas BF reduced diastolic BP (∼4 mmHg; P < 0.05). Although plasma [NO2-] was elevated in all conditions, the consumption of a small, concentrated NO3--rich fluid (BR) was the most effective means of reducing BP. These findings have implications for the use of dietary NO3-supplements when the main objective is to maintain or improve indices of cardiovascular health.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Nitratos/administración & dosificación , Nitratos/metabolismo , Adulto , Beta vulgaris , Suplementos Dietéticos , Jugos de Frutas y Vegetales , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Masculino , Nitratos/farmacocinética , Nitritos/análisis , Nitritos/metabolismo , Saliva/química
11.
J Appl Physiol (1985) ; 123(4): 983-992, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28684588

RESUMEN

Dietary nitrate supplementation enhances sea level performance and may ameliorate hypoxemia at high altitude. However, nitrate may exacerbate acute mountain sickness (AMS), specifically headache. This study investigated the effect of nitrate supplementation on AMS symptoms and exercise responses with 6-h hypoxia. Twenty recreationally active men [age, 22 ± 4 yr, maximal oxygen consumption (V̇o2max), 51 ± 6 ml·min-1·kg-1, means ± SD] completed this randomized double-blinded placebo-controlled crossover study. Twelve participants were classified as AMS- on the basis of Environmental Symptoms Questionnaire [Acute Cerebral Mountain Sickness score (AMS-C)] <0.7 in both trials, and five participants were classified as AMS+ on the basis of AMS-C ≥0.7 on placebo. Five days of nitrate supplementation (70-ml beetroot juice containing ~6.4 mmol nitrate daily) increased plasma NO metabolites by 182 µM compared with placebo but did not reduce AMS or improve exercise performance. After 4-h hypoxia [inspired O2 fraction ([Formula: see text]) = 0.124], nitrate increased AMS-C and headache severity (visual analog scale; whole sample ∆10 [1, 20] mm, mean difference [95% confidence interval]; P = 0.03) compared with placebo. In addition, after 5-h hypoxia, nitrate increased sense of effort during submaximal exercise (∆7 [-1, 14]; P = 0.07). In AMS-, nitrate did not alter headache or sense of effort. In contrast, in AMS+, nitrate increased headache severity (∆26 [-3, 56] mm; P = 0.07), sense of effort (∆14 [1, 28]; P = 0.04), oxygen consumption, ventilation, and mean arterial pressure during submaximal exercise. On the next day, in a separate acute hypoxic exercise test ([Formula: see text] = 0.141), nitrate did not improve time to exhaustion at 80% hypoxic V̇o2max In conclusion, dietary nitrate increases AMS and sense of effort during exercise, particularly in those who experience AMS. Dietary nitrate is therefore not recommended as an AMS prophylactic or ergogenic aid in nonacclimatized individuals at altitude.NEW & NOTEWORTHY This is the first study to identify that the popular dietary nitrate supplement (beetroot) does not reduce acute mountain sickness (AMS) or improve exercise performance during 6-h hypoxia. The consumption of nitrate in those susceptible to AMS exacerbates AMS symptoms (headache) and sense of effort and raises oxygen cost, ventilation, and blood pressure during walking exercise in 6-h hypoxia. These data question the suitability of nitrate supplementation during altitude travel in nonacclimatized people.


Asunto(s)
Mal de Altura/fisiopatología , Ejercicio Físico/fisiología , Hipoxia/fisiopatología , Nitratos/administración & dosificación , Consumo de Oxígeno/fisiología , Esfuerzo Físico/fisiología , Adolescente , Adulto , Mal de Altura/diagnóstico , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Prueba de Esfuerzo , Humanos , Masculino , Índice de Severidad de la Enfermedad , Adulto Joven
12.
J Appl Physiol (1985) ; 122(3): 642-652, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27909231

RESUMEN

We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and [Formula: see text]-depleted beetroot juice as a placebo (SIT+PL); 2) SIT and [Formula: see text]-rich beetroot juice (~13 mmol [Formula: see text]/day; SIT+BR); or 3) no training and [Formula: see text]-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P < 0.05) but not SIT+PL. The peak work rate attained during incremental exercise increased more in SIT+BR than in SIT+PL (P < 0.05) or NT+BR (P < 0.001). The reduction in muscle and blood [lactate] and the increase in muscle pH from preintervention to postintervention were greater at 3 min of severe-intensity exercise in SIT+BR compared with SIT+PL and NT+BR (P < 0.05). However, the change in severe-intensity exercise performance was not different between SIT+BR and SIT+PL (P > 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT.NEW & NOTEWORTHY We investigated the influence of nitrate-rich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training.


Asunto(s)
Adaptación Fisiológica/fisiología , Suplementos Dietéticos , Entrenamiento de Intervalos de Alta Intensidad/métodos , Músculo Esquelético/fisiología , Nitratos/administración & dosificación , Consumo de Oxígeno/fisiología , Carrera/fisiología , Adaptación Fisiológica/efectos de los fármacos , Administración Oral , Adulto , Rendimiento Atlético/fisiología , Humanos , Masculino , Músculo Esquelético/efectos de los fármacos , Oxígeno/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Análisis y Desempeño de Tareas
13.
Nitric Oxide ; 63: 13-20, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28024935

RESUMEN

Uptake of inorganic nitrate (NO3-) into the salivary circulation is a rate-limiting step for dietary NO3- metabolism in mammals. It has been suggested that salivary NO3- uptake occurs in competition with inorganic iodide (I-). Therefore, this study tested the hypothesis that I- supplementation would interfere with NO3- metabolism and blunt blood pressure reductions after dietary NO3- supplementation. Nine healthy adults (4 male, mean ± SD, age 20 ± 1 yr) reported to the laboratory for initial baseline assessment (control) and following six day supplementation periods with 140 mL·day-1 NO3--rich beetroot juice (8.4 mmol NO3-·day-1) and 198 mg potassium gluconate·day-1 (nitrate), and 140 mL·day-1 NO3--rich beetroot juice and 450 µg potassium iodide·day-1 (nitrate + iodide) in a randomized, cross-over experiment. Salivary [I-] was higher in the nitrate + iodide compared to the control and NIT trials (P < 0.05). Salivary and plasma [NO3-] and [NO2-] were higher in the nitrate and nitrate + iodide trials compared to the control trial (P < 0.05). Plasma [NO3-] was higher (474 ± 127 vs. 438 ± 117 µM) and the salivary-plasma [NO3-] ratio was lower (14 ± 6 vs. 20 ± 6 µM), indicative of a lower salivary NO3- uptake, in the nitrate + iodide trial compared to the nitrate trial (P < 0.05). Plasma and salivary [NO2-] were not different between the nitrate and nitrate + iodide trials (P > 0.05). Systolic blood pressure was lower than control (112 ± 13 mmHg) in the nitrate (106 ± 13 mmHg) and nitrate + iodide (106 ± 11 mmHg) trials (P < 0.05), with no differences between the nitrate and nitrate + iodide trials (P > 0.05). In conclusion, co-ingesting NO3- and I- perturbed salivary NO3- uptake, but the increase in salivary and plasma [NO2-] and the lowering of blood pressure were similar compared to NO3- ingestion alone. Therefore, increased dietary I- intake, which is recommended in several countries worldwide as an initiative to offset hypothyroidism, does not appear to compromise the blood pressure reduction afforded by increased dietary NO3- intake.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Suplementos Dietéticos , Yoduros/metabolismo , Nitratos/metabolismo , Presión Arterial/efectos de los fármacos , Beta vulgaris , Femenino , Jugos de Frutas y Vegetales , Humanos , Yoduros/administración & dosificación , Masculino , Nitratos/administración & dosificación , Nitratos/sangre , Nitritos/sangre , Nitritos/metabolismo , Saliva/metabolismo , Adulto Joven
14.
Am J Physiol Heart Circ Physiol ; 311(6): H1520-H1529, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27694216

RESUMEN

We tested the hypothesis that dietary nitrate (NO3-)-rich beetroot juice (BR) supplementation could partially offset deteriorations in O2 transport and utilization and exercise tolerance after blood donation. Twenty-two healthy volunteers performed moderate-intensity and ramp incremental cycle exercise tests prior to and following withdrawal of ∼450 ml of whole blood. Before donation, all subjects consumed seven 70-ml shots of NO3--depleted BR [placebo (PL)] in the 48 h preceding the exercise tests. During the 48 h after blood donation, subjects consumed seven shots of BR (each containing 6.2 mmol of NO3-, n = 11) or PL (n = 11) before repeating the exercise tests. Hemoglobin concentration and hematocrit were reduced by ∼8-9% following blood donation (P < 0.05), with no difference between the BR and PL groups. Steady-state O2 uptake during moderate-intensity exercise was ∼4% lower after than before donation in the BR group (P < 0.05) but was unchanged in the PL group. The ramp test peak power decreased from predonation (341 ± 70 and 331 ± 68 W in PL and BR, respectively) to postdonation (324 ± 69 and 322 ± 66 W in PL and BR, respectively) in both groups (P < 0.05). However, the decrement in performance was significantly less in the BR than PL group (2.7% vs. 5.0%, P < 0.05). NO3- supplementation reduced the O2 cost of moderate-intensity exercise and attenuated the decline in ramp incremental exercise performance following blood donation. These results have implications for improving functional capacity following blood loss.


Asunto(s)
Beta vulgaris , Donantes de Sangre , Suplementos Dietéticos , Tolerancia al Ejercicio/efectos de los fármacos , Jugos de Frutas y Vegetales , Nitratos/farmacología , Consumo de Oxígeno/efectos de los fármacos , Adulto , Método Doble Ciego , Prueba de Esfuerzo , Femenino , Voluntarios Sanos , Hematócrito , Hemoglobinas/metabolismo , Humanos , Masculino , Adulto Joven
15.
Nitric Oxide ; 59: 10-20, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27378312

RESUMEN

This study tested the hypothesis that watermelon juice supplementation would improve nitric oxide bioavailability and exercise performance. Eight healthy recreationally-active adult males reported to the laboratory on two occasions for initial testing without dietary supplementation (control condition). Thereafter, participants were randomly assigned, in a cross-over experimental design, to receive 16 days of supplementation with 300 mL·day(-1) of a watermelon juice concentrate, which provided ∼3.4 g l-citrulline·day(-1) and an apple juice concentrate as a placebo. Participants reported to the laboratory on days 14 and 16 of supplementation to assess the effects of the interventions on blood pressure, plasma [l-citrulline], plasma [l-arginine], plasma [nitrite], muscle oxygenation and time-to-exhaustion during severe-intensity exercise. Compared to control and placebo, plasma [l-citrulline] (29 ± 4, 22 ± 6 and 101 ± 23 µM), [l-arginine] (74 ± 9, 67 ± 13 and 116 ± 9 µM) and [nitrite] (102 ± 29, 106 ± 21 and 201 ± 106 nM) were higher after watermelon juice supplementation (P < 0.01). However, systolic blood pressure was higher in the watermelon juice (130 ± 11) and placebo (131 ± 9) conditions compared to the control condition (124 ± 8 mmHg; P < 0.05). The skeletal muscle oxygenation index during moderate-intensity exercise was greater in the watermelon juice condition than the placebo and control conditions (P < 0.05), but time-to-exhaustion during the severe-intensity exercise test (control: 478 ± 80, placebo: 539 ± 108, watermelon juice: 550 ± 143 s) was not significantly different between conditions (P < 0.05). In conclusion, while watermelon juice supplementation increased baseline plasma [nitrite] and improved muscle oxygenation during moderate-intensity exercise, it increased resting blood pressure and did not improve time-to-exhaustion during severe-intensity exercise. These findings do not support the use of watermelon juice supplementation as a nutritional intervention to lower blood pressure or improve endurance exercise performance in healthy adults.


Asunto(s)
Citrullus , Suplementos Dietéticos , Jugos de Frutas y Vegetales , Óxido Nítrico/análisis , Resistencia Física , Arginina/sangre , Presión Arterial , Glucemia/análisis , Citrulina/sangre , Frecuencia Cardíaca , Humanos , Ácido Láctico/sangre , Masculino , Malus , Nitritos/sangre , Consumo de Oxígeno , Intercambio Gaseoso Pulmonar , Adulto Joven
16.
Nitric Oxide ; 57: 30-39, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27093910

RESUMEN

PURPOSE: To investigate whether chronic supplementation with a low or moderate dose of dietary nitrate (NO3(-)) reduces submaximal exercise oxygen uptake (V˙O2) and to assess whether or not this is dependent on acute NO3(-) administration prior to exercise. METHODS: Following baseline tests, 34 healthy subjects were allocated to receive 3 mmol NO3(-), 6 mmol NO3(-) or placebo. Two hours following the first ingestion, and after 7, 28 and 30 days of supplementation, subjects completed two moderate-intensity step exercise tests. On days 28 and 30, subjects in the NO3(-) groups completed the test 2 h post consumption of a NO3(-) dose (CHR + ACU) and a placebo dose (CHR). RESULTS: Plasma nitrite concentration ([NO2(-)]) was elevated in a dose-dependent manner at 2 h, 7 days and 28-30 days on the CHR + ACU visit. Compared to pre-treatment baseline, 6 mmol NO3(-) reduced the steady-state V˙O2 during moderate-intensity exercise by 3% at 2 h (P = 0.06), 7 days and at 28-30 days (both P < 0.05) on the CHR + ACU visit, but was unaffected by 3 mmol NO3(-) at all measurement points. On the CHR visit in the 6 mmol group, plasma [NO2(-)] had returned to pre-treatment baseline, but the steady-state V˙O2 remained reduced. CONCLUSION: Up to ∼4 weeks supplementation with 6 but not 3 mmol NO3(-) can reduce submaximal exercise V˙O2. A comparable reduction in submaximal exercise V˙O2 following chronic supplementation with 6 mmol NO3(-) can be achieved both with and without the acute ingestion of NO3(-) and associated elevation of plasma [NO2(-)].


Asunto(s)
Ejercicio Físico/fisiología , Nitratos/administración & dosificación , Consumo de Oxígeno , Fenómenos Fisiológicos en la Nutrición Deportiva , Adolescente , Adulto , Suplementos Dietéticos , Femenino , Humanos , Masculino , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/sangre , Adulto Joven
17.
Eur J Appl Physiol ; 116(2): 415-25, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26614506

RESUMEN

PURPOSE: This study tested the hypothesis that nitrate (NO3-) supplementation would improve performance during high-intensity intermittent exercise featuring different work and recovery intervals. METHOD: Ten male team-sport players completed high-intensity intermittent cycling tests during separate 5-day supplementation periods with NO3 (-)-rich beetroot juice (BR; 8.2 mmol NO3- day(-1)) and NO3 (-)-depleted beetroot juice (PL; 0.08 mmol NO3- day(-1)). Subjects completed: twenty-four 6-s all-out sprints interspersed with 24 s of recovery (24 × 6-s); seven 30-s all-out sprints interspersed with 240 s of recovery (7 × 30-s); and six 60-s self-paced maximal efforts interspersed with 60 s of recovery (6 × 60-s); on days 3, 4, and 5 of supplementation, respectively. RESULT: Plasma [NO2-] was 237% greater in the BR trials. Mean power output was significantly greater with BR relative to PL in the 24 × 6-s protocol (568 ± 136 vs. 539 ± 136 W; P < 0.05), but not during the 7 × 30-s (558 ± 95 vs. 562 ± 94 W) or 6 × 60-s (374 ± 57 vs. 375 ± 59 W) protocols (P > 0.05). The increase in blood [lactate] across the 24 × 6-s and 7 × 30-s protocols was greater with BR (P < 0.05), but was not different in the 6 × 60-s protocol (P > 0.05). CONCLUSION: BR might be ergogenic during repeated bouts of short-duration maximal-intensity exercise interspersed with short recovery periods, but not necessarily during longer duration intervals or when a longer recovery duration is applied. These findings suggest that BR might have implications for performance enhancement during some types of intermittent exercise.


Asunto(s)
Umbral Anaerobio/efectos de los fármacos , Beta vulgaris/química , Tolerancia al Ejercicio/efectos de los fármacos , Ejercicio Físico , Extractos Vegetales/farmacología , Suplementos Dietéticos , Humanos , Masculino , Extractos Vegetales/administración & dosificación , Adulto Joven
18.
J Appl Physiol (1985) ; 118(11): 1396-405, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25858494

RESUMEN

We tested the hypothesis that inorganic nitrate (NO3 (-)) supplementation would improve muscle oxygenation, pulmonary oxygen uptake (V̇o2) kinetics, and exercise tolerance (Tlim) to a greater extent when cycling at high compared with low pedal rates. In a randomized, placebo-controlled cross-over study, seven subjects (mean ± SD, age 21 ± 2 yr, body mass 86 ± 10 kg) completed severe-intensity step cycle tests at pedal cadences of 35 rpm and 115 rpm during separate nine-day supplementation periods with NO3 (-)-rich beetroot juice (BR) (providing 8.4 mmol NO3 (-)/day) and placebo (PLA). Compared with PLA, plasma nitrite concentration increased 178% with BR (P < 0.01). There were no significant differences in muscle oxyhemoglobin concentration ([O2Hb]), phase II V̇o2 kinetics, or Tlim between BR and PLA when cycling at 35 rpm (P > 0.05). However, when cycling at 115 rpm, muscle [O2Hb] was higher at baseline and throughout exercise, phase II V̇o2 kinetics was faster (47 ± 16 s vs. 61 ± 25 s; P < 0.05), and Tlim was greater (362 ± 137 s vs. 297 ± 79 s; P < 0.05) with BR compared with PLA. These results suggest that short-term BR supplementation can increase muscle oxygenation, expedite the adjustment of oxidative metabolism, and enhance exercise tolerance when cycling at a high, but not a low, pedal cadence in healthy recreationally active subjects. These findings support recent observations that NO3 (-) supplementation may be particularly effective at improving physiological and functional responses in type II muscle fibers.


Asunto(s)
Beta vulgaris , Ciclismo , Suplementos Dietéticos , Ejercicio Físico , Jugos de Frutas y Vegetales , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Nitratos/administración & dosificación , Consumo de Oxígeno/efectos de los fármacos , Sustancias para Mejorar el Rendimiento/administración & dosificación , Estudios Cruzados , Tolerancia al Ejercicio/efectos de los fármacos , Humanos , Cinética , Masculino , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/metabolismo , Raíces de Plantas , Adulto Joven
19.
Eur J Appl Physiol ; 115(9): 1825-34, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25846114

RESUMEN

UNLABELLED: It is possible that dietary nitrate (NO3 (-)) supplementation may improve both physical and cognitive performance via its influence on blood flow and cellular energetics. PURPOSE: To investigate the effects of dietary NO3 (-) supplementation on exercise performance and cognitive function during a prolonged intermittent sprint test (IST) protocol, which was designed to reflect typical work patterns during team sports. METHODS: In a double-blind randomised crossover study, 16 male team-sport players received NO3 (-)-rich (BR; 140 mL day(-1); 12.8 mmol of NO3 (-)), and NO3 (-)-depleted (PL; 140 mL day(-1); 0.08 mmol NO3 (-)) beetroot juice for 7 days. On day 7 of supplementation, subjects completed the IST (two 40-min "halves" of repeated 2-min blocks consisting of a 6-s "all-out" sprint, 100-s active recovery and 20 s of rest), on a cycle ergometer during which cognitive tasks were simultaneously performed. RESULTS: Total work done during the sprints of the IST was greater in BR (123 ± 19 kJ) compared to PL (119 ± 17 kJ; P < 0.05). Reaction time of response to the cognitive tasks in the second half of the IST was improved in BR compared to PL (BR first half: 820 ± 96 vs. second half: 817 ± 86 ms; PL first half: 824 ± 114 vs. second half: 847 ± 118 ms; P < 0.05). There was no difference in response accuracy. CONCLUSIONS: These findings suggest that dietary NO3 (-) enhances repeated sprint performance and may attenuate the decline in cognitive function (and specifically reaction time) that may occur during prolonged intermittent exercise.


Asunto(s)
Rendimiento Atlético/fisiología , Cognición/fisiología , Suplementos Dietéticos , Ejercicio Físico/fisiología , Nitratos/administración & dosificación , Carrera/fisiología , Administración Oral , Cognición/efectos de los fármacos , Método Doble Ciego , Humanos , Nitratos/farmacocinética , Esfuerzo Físico/efectos de los fármacos , Esfuerzo Físico/fisiología , Resultado del Tratamiento , Adulto Joven
20.
Am J Physiol Regul Integr Comp Physiol ; 307(7): R920-30, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25009219

RESUMEN

We investigated the effects of dietary nitrate (NO3 (-)) supplementation on the concentration of plasma nitrite ([NO2 (-)]), oxygen uptake (V̇o2) kinetics, and exercise tolerance in normoxia (N) and hypoxia (H). In a double-blind, crossover study, 12 healthy subjects completed cycle exercise tests, twice in N (20.9% O2) and twice in H (13.1% O2). Subjects ingested either 140 ml/day of NO3 (-)-rich beetroot juice (8.4 mmol NO3; BR) or NO3 (-)-depleted beetroot juice (PL) for 3 days prior to moderate-intensity and severe-intensity exercise tests in H and N. Preexercise plasma [NO2 (-)] was significantly elevated in H-BR and N-BR compared with H-PL (P < 0.01) and N-PL (P < 0.01). The rate of decline in plasma [NO2 (-)] was greater during severe-intensity exercise in H-BR [-30 ± 22 nM/min, 95% confidence interval (CI); -44, -16] compared with H-PL (-7 ± 10 nM/min, 95% CI; -13, -1; P < 0.01) and in N-BR (-26 ± 19 nM/min, 95% CI; -38, -14) compared with N-PL (-1 ± 6 nM/min, 95% CI; -5, 2; P < 0.01). During moderate-intensity exercise, steady-state pulmonary V̇o2 was lower in H-BR (1.91 ± 0.28 l/min, 95% CI; 1.77, 2.13) compared with H-PL (2.05 ± 0.25 l/min, 95% CI; 1.93, 2.26; P = 0.02), and V̇o2 kinetics was faster in H-BR (τ: 24 ± 13 s, 95% CI; 15, 32) compared with H-PL (31 ± 11 s, 95% CI; 23, 38; P = 0.04). NO3 (-) supplementation had no significant effect on V̇o2 kinetics during severe-intensity exercise in hypoxia, or during moderate-intensity or severe-intensity exercise in normoxia. Tolerance to severe-intensity exercise was improved by NO3 (-) in hypoxia (H-PL: 197 ± 28; 95% CI; 173, 220 vs. H-BR: 214 ± 43 s, 95% CI; 177, 249; P = 0.04) but not normoxia. The metabolism of NO2 (-) during exercise is altered by NO3 (-) supplementation, exercise, and to a lesser extent, hypoxia. In hypoxia, NO3 (-) supplementation enhances V̇o2 kinetics during moderate-intensity exercise and improves severe-intensity exercise tolerance. These findings may have important implications for individuals exercising at altitude.


Asunto(s)
Ejercicio Físico/fisiología , Nitratos/farmacología , Nitritos/sangre , Oxígeno/metabolismo , Adolescente , Adulto , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Suplementos Dietéticos , Método Doble Ciego , Tolerancia al Ejercicio/fisiología , Humanos , Masculino , Músculo Esquelético/efectos de los fármacos , Consumo de Oxígeno/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA