Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Nutr ESPEN ; 56: 127-134, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37344061

RESUMEN

BACKGROUND & AIMS: Oral lutein (L) and zeaxanthin (Z) supplementation enhances macular pigment optical density (MPOD) and plays a protective role in the development of age-related macular degeneration (AMD). Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a novel in vivo retinal imaging method that has been shown to correlate to classical MPOD measurements and might contribute to a metabolic mapping of the retina in the future. Our aim was to show that oral supplementation of L and Z affects the FLIO signal in a positive way in patients with AMD. METHODS: This was a prospective, single center, open label cohort study. Patients with early and intermediate AMD received oral L and Z supplementation during three months, and were observed for another three months after therapy termination. All visits included measurements of clinical parameters, serum L and Z concentration, MPOD measurements using heterochromatic flicker photometry, dual wavelength autofluorescence imaging, and FLIO. Correlation analysis between FLIO and MPOD were performed. RESULTS: Twenty-one patients completed the follow up period. Serum L and Z concentrations significantly increased during supplementation (mean difference 244.8 ng/ml; 95% CI: 81.26-419.9, and 77.1 ng/ml; 95% CI: 5.3-52.0, respectively). Mean MPOD units significantly increased (mean difference 0.06; 95% CI: 0.02-0.09; at 0.5°, 202; 95% CI: 58-345; at 2°, 1033; 95% CI: 288-1668; at 9° of eccentricity, respectively) after three months of supplementation with macular xanthophylls, which included L and Z. Median FLIO lifetimes in the foveal center significantly decreased from 277.3 ps (interquartile range 230.2-339.1) to 261.0 ps (interquartile range 231.4-334.4, p = 0.027). All parameters returned to near-normal values after termination of the nutritional supplementation. A significant negative correlation was found between FLIO and MPOD (r2 = 0.57, p < 0.0001). CONCLUSIONS: FLIO is able to detect subtle changes in MPOD after L and Z supplementation in patients with early and intermediate AMD. Our findings confirm the previous described negative correlation between FLIO and MPOD. Macular xanthophylls seem to contribute to short foveal lifetimes. This study is registered at ClinicalTrials.gov (identifier number NCT04761341).


Asunto(s)
Degeneración Macular , Pigmento Macular , Humanos , Luteína , Pigmento Macular/metabolismo , Zeaxantinas , Proyectos Piloto , Estudios Prospectivos , Estudios de Cohortes , Degeneración Macular/tratamiento farmacológico , Suplementos Dietéticos , Oftalmoscopía
2.
Nutrients ; 15(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37242207

RESUMEN

BACKGROUND: ß-cryptoxanthin is a dietary carotenoid for which there have been few studies on the safety and pharmacokinetics following daily oral supplementation. METHODS: 90 healthy Asian women between 21 and 35 years were randomized into three groups: 3 and 6 mg/day oral ß-cryptoxanthin, and placebo. At 2, 4, and 8 weeks of supplementation, plasma carotenoid levels were measured. The effects of ß-cryptoxanthin on blood retinoid-dependent gene expression, mood, physical activity and sleep, metabolic parameters, and fecal microbial composition were investigated. RESULTS: ß-cryptoxanthin supplementation for 8 weeks (3 and 6 mg/day) was found to be safe and well tolerated. Plasma ß-cryptoxanthin concentration was significantly higher in the 6 mg/day group (9.0 ± 4.1 µmol/L) compared to 3 mg/day group (6.0 ± 2.6 µmol/L) (p < 0.03), and placebo (0.4 ± 0.1 µmol/L) (p < 0.001) after 8 weeks. Plasma all-trans retinol, α-cryptoxanthin, α-carotene, ß-carotene, lycopene, lutein, and zeaxanthin levels were not significantly changed. No effects were found on blood retinol-dependent gene expression, mood, physical activity and sleep, metabolic parameters, and fecal microbial composition. CONCLUSIONS: Oral ß-cryptoxanthin supplementation over 8 weeks lead to high plasma concentrations of ß-cryptoxanthin, with no impact on other carotenoids, and was well tolerated in healthy women.


Asunto(s)
beta-Criptoxantina , Vitamina A , Humanos , Femenino , Carotenoides , beta Caroteno , Luteína , Zeaxantinas , Suplementos Dietéticos
3.
Arch Biochem Biophys ; 652: 18-26, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29885291

RESUMEN

Carotenoids are naturally occurring pigments found in most fruits and vegetables, plants, algae, and photosynthetic bacteria. Humans cannot synthesize carotenoids and must ingest them in food or via supplementation. Carotenoids have a range of functions in human health. They primarily exert antioxidant effects, but individual carotenoids may also act through other mechanisms; for example, ß-carotene has a pro-vitamin A function, while lutein/zeaxanthin constitute macular pigment in the eye. The benefit of lutein in reducing progression of age-related macular eye disease and cataracts is strengthening; an intake recommendation would help to generate awareness in the general population to have an adequate intake of lutein rich foods. There is evidence that carotenoids, in addition to beneficial effects on eye health, also produce improvements in cognitive function and cardiovascular health, and may help to prevent some types of cancer. Despite the evidence for the health benefits of carotenoids, large population-based supplementation studies have produced mixed results for some of the carotenoids. To establish and confirm the health benefits of the different carotenoids more research, including clinical studies, is needed.


Asunto(s)
Antioxidantes/farmacología , Carotenoides/farmacología , Catarata/prevención & control , Suplementos Dietéticos , Frutas/química , Humanos , Degeneración Macular/prevención & control , Verduras/química
4.
Br J Nutr ; 114(8): 1113-22, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26291567

RESUMEN

Vitamin E (α-tocopherol) is recognised as a key essential lipophilic antioxidant in humans protecting lipoproteins, PUFA, cellular and intra-cellular membranes from damage. The aim of this review was to evaluate the relevant published data about vitamin E requirements in relation to dietary PUFA intake. Evidence in animals and humans indicates a minimal basal requirement of 4-5 mg/d of RRR-α-tocopherol when the diet is very low in PUFA. The vitamin E requirement will increase with an increase in PUFA consumption and with the degree of unsaturation of the PUFA in the diet. The vitamin E requirement related to dietary linoleic acid, which is globally the major dietary PUFA in humans, was calculated to be 0·4-0·6 mg of RRR-α-tocopherol/g of linoleic acid. Animal studies show that for fatty acids with a higher degree of unsaturation, the vitamin E requirement increases almost linearly with the degree of unsaturation of the PUFA in the relative ratios of 0·3, 2, 3, 4, 5 and 6 for mono-, di-, tri-, tetra-, penta- and hexaenoic fatty acids, respectively. Assuming a typical intake of dietary PUFA, a vitamin E requirement ranging from 12 to 20 mg of RRR-α-tocopherol/d can be calculated. A number of guidelines recommend to increase PUFA intake as they have well-established health benefits. It will be prudent to assure an adequate vitamin E intake to match the increased PUFA intake, especially as vitamin E intake is already below recommendations in many populations worldwide.


Asunto(s)
Ácidos Grasos Insaturados/administración & dosificación , Vitamina E/administración & dosificación , Animales , Antioxidantes/administración & dosificación , Dieta , Grasas Insaturadas en la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Metaanálisis como Asunto , Necesidades Nutricionales
5.
PLoS One ; 6(6): e20644, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21673813

RESUMEN

Evidence from cell culture studies indicates that ß-carotene-(BC)-derived apocarotenoid signaling molecules can modulate the activities of nuclear receptors that regulate many aspects of adipocyte physiology. Two BC metabolizing enzymes, the BC-15,15'-oxygenase (Bcmo1) and the BC-9',10'-oxygenase (Bcdo2) are expressed in adipocytes. Bcmo1 catalyzes the conversion of BC into retinaldehyde and Bcdo2 into ß-10'-apocarotenal and ß-ionone. Here we analyzed the impact of BC on body adiposity of mice. To genetically dissect the roles of Bcmo1 and Bcdo2 in this process, we used wild-type and Bcmo1(-/-) mice for this study. In wild-type mice, BC was converted into retinoids. In contrast, Bcmo1(-/-) mice showed increased expression of Bcdo2 in adipocytes and ß-10'-apocarotenol accumulated as the major BC derivative. In wild-type mice, BC significantly reduced body adiposity (by 28%), leptinemia and adipocyte size. Genome wide microarray analysis of inguinal white adipose tissue revealed a generalized decrease of mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) target genes. Consistently, the expression of this key transcription factor for lipogenesis was significantly reduced both on the mRNA and protein levels. Despite ß-10'-apocarotenoid production, this effect of BC was absent in Bcmo1(-/-) mice, demonstrating that it was dependent on the Bcmo1-mediated production of retinoids. Our study evidences an important role of BC for the control of body adiposity in mice and identifies Bcmo1 as critical molecular player for the regulation of PPARγ activity in adipocytes.


Asunto(s)
Adiposidad/efectos de los fármacos , beta Caroteno/farmacología , beta-Caroteno 15,15'-Monooxigenasa/metabolismo , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Animales , Suplementos Dietéticos , Dioxigenasas , Regulación hacia Abajo/efectos de los fármacos , Femenino , Ratones , Ratones Endogámicos C57BL , Oxigenasas/genética , Oxigenasas/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Retinoides/sangre , Retinoides/metabolismo , beta-Caroteno 15,15'-Monooxigenasa/genética
6.
Br J Nutr ; 105(8): 1150-63, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21205415

RESUMEN

A healthy, balanced diet is essential for both physical and mental well-being. Such a diet must include an adequate intake of micronutrients, essential fatty acids, amino acids and antioxidants. The monoamine neurotransmitters, serotonin, dopamine and noradrenaline, are derived from dietary amino acids and are involved in the modulation of mood, anxiety, cognition, sleep regulation and appetite. The capacity of nutritional interventions to elevate brain monoamine concentrations and, as a consequence, with the potential for mood enhancement, has not been extensively evaluated. The present study investigated an extract from oregano leaves, with a specified range of active constituents, identified via an unbiased, high-throughput screening programme. The oregano extract was demonstrated to inhibit the reuptake and degradation of the monoamine neurotransmitters in a dose-dependent manner, and microdialysis experiments in rats revealed an elevation of extracellular serotonin levels in the brain. Furthermore, following administration of oregano extract, behavioural responses were observed in mice that parallel the beneficial effects exhibited by monoamine-enhancing compounds when used in human subjects. In conclusion, these data show that an extract prepared from leaves of oregano, a major constituent of the Mediterranean diet, is brain-active, with moderate triple reuptake inhibitory activity, and exhibits positive behavioural effects in animal models. We postulate that such an extract may be effective in enhancing mental well-being in humans.


Asunto(s)
Ansiolíticos/uso terapéutico , Antidepresivos/uso terapéutico , Monoaminas Biogénicas/fisiología , Suplementos Dietéticos , Inhibidores de la Captación de Neurotransmisores/uso terapéutico , Origanum/química , Extractos Vegetales/uso terapéutico , Animales , Ansiolíticos/química , Ansiolíticos/metabolismo , Antidepresivos/química , Antidepresivos/metabolismo , Ansiedad/prevención & control , Conducta Animal , Benzoquinonas/análisis , Benzoquinonas/farmacología , Encéfalo/metabolismo , Cimenos , Depresión/prevención & control , Suplementos Dietéticos/análisis , Descubrimiento de Drogas/métodos , Células HEK293 , Humanos , Masculino , Ratones , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/uso terapéutico , Monoterpenos/análisis , Monoterpenos/sangre , Monoterpenos/farmacología , Inhibidores de la Captación de Neurotransmisores/química , Inhibidores de la Captación de Neurotransmisores/metabolismo , Inhibidores de la Captación de Neurotransmisores/farmacología , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Hojas de la Planta/química , Distribución Aleatoria , Ratas , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
7.
J Nutr ; 140(12): 2134-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20962153

RESUMEN

Two enzymes have been identified for the oxidative metabolism of carotenoids in mammals. Carotene-15,15'-monooxygenase (CMO-I) primarily centrally cleaves ß,ß-carotene to form vitamin A. We hypothesize that carotene-9',10'-monooxygenase (CMO-II) plays a key role in metabolism of acyclic nonprovitamin A carotenoids such as lycopene. We investigated carotenoid bioaccumulation in young adult, male, wild-type (WT) mice or mice lacking CMO-II (CMO-II KO). Mice were fed an AIN-93G diet or identical diets supplemented with 10% tomato powder, 130 mg lycopene/kg diet (10% lycopene beadlets), or placebo beadlets for 4 or 30 d. Lycopene preferentially accumulated in CMO-II KO mouse tissues and serum compared with WT mouse tissues. ß-Carotene preferentially accumulated in some CMO-II KO mouse tissues compared with WT mouse tissues. Relative tissue mRNA expression of CMO-I and CMO-II was differentially expressed in mouse tissues, and CMO-II, but not CMO-I, was expressed in mouse prostate. In conclusion, the loss of CMO-II expression leads to increased serum and tissue concentrations of lycopene in tomato-fed mice.


Asunto(s)
Carotenoides/metabolismo , Ácido Graso Desaturasas/metabolismo , Animales , Peso Corporal , Carotenoides/administración & dosificación , Carotenoides/sangre , Cromatografía Líquida de Alta Presión , Cartilla de ADN , Ácido Graso Desaturasas/genética , Licopeno , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos , Placebos , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética
8.
Cell Mol Life Sci ; 67(12): 2039-56, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20372966

RESUMEN

Beta-carotene 15,15'-monooxygenase 1 knockout (Bcmo1 (-/-)) mice accumulate beta-carotene (BC) similarly to humans, whereas wild-type (Bcmo1 (+/+)) mice efficiently cleave BC. Bcmo1 (-/-) mice are therefore suitable to investigate BC-induced alterations in gene expression in lung, assessed by microarray analysis. Bcmo1 (-/-) mice receiving control diet had increased expression of inflammatory genes as compared to BC-supplemented Bcmo1 (-/-) mice and Bcmo1 (+/+) mice that received either control or BC-supplemented diets. Differential gene expression in Bcmo1 (-/-) mice was confirmed by real-time quantitative PCR. Histochemical analysis indeed showed an increase in inflammatory cells in lungs of control Bcmo1 (-/-) mice. Supported by metabolite and gene-expression data, we hypothesize that the increased inflammatory response is due to an altered BC metabolism, resulting in an increased vitamin A requirement in Bcmo1 (-/-) mice. This suggests that effects of BC may depend on inter-individual variations in BC-metabolizing enzymes, such as the frequently occurring human polymorphisms in BCMO1.


Asunto(s)
Pulmón/metabolismo , beta Caroteno/metabolismo , beta Caroteno/farmacología , beta-Caroteno 15,15'-Monooxigenasa/biosíntesis , Animales , Dieta , Suplementos Dietéticos , Femenino , Metabolismo de los Lípidos/genética , Ratones , Ratones Noqueados , beta Caroteno/genética , beta-Caroteno 15,15'-Monooxigenasa/genética
9.
J Nutr ; 138(12): 2367-71, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19022959

RESUMEN

15,15'-carotenoid monooxygenase (CMO I) is generally recognized as the central carotenoid cleavage enzyme responsible for converting provitamin A carotenoids to vitamin A, while having little affinity for nonprovitamin A carotenoids, such as lycopene. To investigate the role of CMO I in carotenoid metabolism, approximately 90-d-old C57BL/6 x 129/SvJ [CMO I wild-type (WT)] and B6;129S6-Bcmo1tm1Dnp [CMO I knockout (KO)] mice were fed a high-fat, moderate vitamin A, cholesterol-containing diet supplemented with 150 mg/kg diet of beta-carotene, lycopene, or placebo beadlets for 60 d (n = 12-14). CMO I KO mice fed lycopene (Lyc-KO) exhibited significant decreases in hepatic, spleen, and thymus lycopene concentrations and significant increases in prostate, seminal vesicles, testes, and brain lycopene concentrations compared with WT mice fed lycopene (Lyc-WT). Furthermore, in the serum and all tissues analyzed, excluding the testes, there was a significant increase in the percent lycopene cis isomers in Lyc-KO mice compared with Lyc-WT mice. CMO I KO mice fed beta-carotene (betaC-KO) had significantly lower hepatic vitamin A concentrations (17% of WT mice fed beta-carotene [betaC-WT]). Concordantly, betaC-KO mice had higher serum and tissue beta-carotene concentrations than betaC-WT mice. In addition, phenotypically CMO I KO mice had significantly higher final body weights and CMO I KO female mice had significantly lower uterus weights than CMO I WT mice. In conclusion, CMO I KO mice fed low levels of vitamin A have altered lycopene biodistribution and isomer patterns and do not cleave beta-carotene to vitamin A at appreciable levels.


Asunto(s)
Carotenoides/metabolismo , beta-Caroteno 15,15'-Monooxigenasa/deficiencia , Animales , Carotenoides/administración & dosificación , Carotenoides/sangre , Colesterol/sangre , Dieta , Femenino , Metabolismo de los Lípidos , Hígado/metabolismo , Licopeno , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Retinoides/sangre , Retinoides/metabolismo , Distribución Tisular , beta Caroteno/administración & dosificación , beta Caroteno/sangre , beta Caroteno/metabolismo , beta-Caroteno 15,15'-Monooxigenasa/genética , beta-Caroteno 15,15'-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA