Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 47(2): 698-713, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37882465

RESUMEN

Tea is an important cash crop that is often consumed by chewing pests, resulting in reduced yields and economic losses. It is important to establish a method to quickly identify the degree of damage to tea plants caused by leaf-eating insects and screen green control compounds. This study was performed through the combination of deep learning and targeted metabolomics, in vitro feeding experiment, enzymic analysis and transient genetic transformation. A small target damage detection model based on YOLOv5 with Transformer Prediction Head (TPH-YOLOv5) algorithm for the tea canopy level was established. Orthogonal partial least squares (OPLS) was used to analyze the correlation between the degree of damage and the phenolic metabolites. A potential defensive compound, (-)-epicatechin-3-O-caffeoate (EC-CA), was screened. In vitro feeding experiments showed that compared with EC and epicatechin gallate, Ectropis grisescens exhibited more significant antifeeding against EC-CA. In vitro enzymatic experiments showed that the hydroxycinnamoyl transferase (CsHCTs) recombinant protein has substrate promiscuity and can catalyze the synthesis of EC-CA. Transient overexpression of CsHCTs in tea leaves effectively reduced the degree of damage to tea leaves. This study provides important reference values and application prospects for the effective monitoring of pests in tea gardens and screening of green chemical control substances.


Asunto(s)
Camellia sinensis , Aprendizaje Profundo , Lepidópteros , Animales , Camellia sinensis/metabolismo , Insectos , Té/química , Té/metabolismo
2.
J Agric Food Chem ; 71(48): 18999-19009, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37997954

RESUMEN

Camellia sinensis contains numerous glycosylated secondary metabolites that provide various benefits to plants and humans. However, the genes that catalyze the glycosylation of multitype metabolites in tea plants remain unclear. Here, 180 uridine diphosphate-dependent glycosyltransferases that may be involved in the biosynthesis of glycosylated secondary metabolites were identified from the National Center for Biotechnology Information public databases. Subsequently, CsUGT74Y1 was screened through phylogenetic analysis and gene expression profiling. Compositional and induced expression analyses revealed that CsUGT74Y1 was highly expressed in tea tender shoots and was induced under biotic and abiotic stress conditions. In vitro enzymatic assays revealed that rCsUGT74Y1 encoded a multifunctional UGT that catalyzed the glycosylation of flavonoids, phenolic acids, lignins, and auxins. Furthermore, CsUGT74Y1-overexpressing Arabidopsis thaliana exhibited enhanced growth and accumulation of flavonol and auxin glucosides. Our findings provide insights into identifying specific UGTs and demonstrate that CsUGT74Y1 is a multifunctional UGT that promotes plant development.


Asunto(s)
Camellia sinensis , Glicosiltransferasas , Humanos , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Uridina Difosfato/metabolismo , Filogenia , Plantas/metabolismo , Camellia sinensis/metabolismo , Té/metabolismo
3.
J Nanobiotechnology ; 21(1): 330, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715259

RESUMEN

Wounds can lead to skin and soft tissue damage and their improper management may lead to the growth of pathogenic bacteria at the site of injury. Identifying better ways to promote wound healing is a major unmet need and biomedical materials with the ability to promote wound healing are urgently needed. Here, we report a thermosensitive black phosphorus hydrogel composed of black phosphorus nano-loaded drug silver sulfadiazine (SSD) and chitosan thermosensitive hydrogel for wound healing. The hydrogel has temperature-sensitive properties and enables the continuous release of SSD under near-infrared irradiation to achieve synergistic photothermal and antibacterial treatment. Additionally, it exerts antibacterial effects on Staphylococcus aureus. In a rat skin injury model, it promotes collagen deposition, boosts neovascularization, and suppresses inflammatory markers. In summary, the excellent thermosensitivity, biocompatibility, and wound-healing-promoting qualities of the reported thermosensitive hydrogel make it suitable as an ideal wound dressing in the clinic.


Asunto(s)
Hidrogeles , Sulfadiazina de Plata , Animales , Ratas , Sulfadiazina de Plata/farmacología , Antibacterianos/farmacología , Cicatrización de Heridas , Fósforo
4.
Biometals ; 36(5): 1141-1156, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37351758

RESUMEN

Gastric cancer is the third leading cause of cancer death, and gastric precancerous lesions (GPLs) are an important stage in the transformation of normal gastric mucosa to gastric cancer. Matched for age and sex, a total of 316 subjects were eventually included from our prospective observation population (including 1007 patients with GPLs and 762 normal controls), and a questionnaire survey was conducted. In total, 10 plasma elements (iron, copper, zinc, selenium, rubidium, strontium, titanium, aluminum, vanadium and arsenic) were measured by applying inductively coupled plasma‒mass spectrometry (ICP‒MS). A multivariate conditional logistic regression model and Bayesian kernel logistic regression model (BKMR) were used to analyze the association between plasma element concentrations and GPLs. In the multimetal model, plasma titanium concentrations were significantly and positively associated with the prevalence of GPLs, with a fourth-quartile OR of 11.56 ([95% CI]: [2.78-48.13]). Plasma selenium and copper were negatively correlated with GPLs, with the highest quartiles of selenium and copper having an OR of 0.03 ([95% CI]: [0.01-0.15]; P < 0.001) and 0.24 ([95% CI]: [0.07-0.82]), respectively. In the BKMR model, there was a significant negative combined correlation of five metals on GPLs: iron, copper, zinc, selenium, and titanium. The results of this study showed that plasma concentrations of selenium and copper were negatively correlated with GPLs, while plasma concentrations of titanium were positively correlated with GPLs, and the combined action of the five elements was negatively correlated with GPLs.


Asunto(s)
Selenio , Neoplasias Gástricas , Oligoelementos , Humanos , Cobre , Zinc , Hierro , Titanio , Neoplasias Gástricas/prevención & control , Teorema de Bayes , Estudios Prospectivos , Vanadio
5.
Curr Pharm Biotechnol ; 24(13): 1708-1714, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959153

RESUMEN

BACKGROUND: Hypertensive nephropathy (HN) is one kind of kidney disorders caused by long-term uncontrolled hypertension, usually resulting in severe kidney damage, including inflammation and oxidative stress, no matter in cells or tissues, from patients with nephropathy. In recent years, nephropathy accompanied by hypertension is becoming one of the main causes for kidney replacement therapy, but few effective treatments have been reported for HN treatment. Asystasia chelonoides (AC) is a kind of plant with the effects of anti-inflammation, lowering blood pressure, and anti-oxidative stress. Still, the therapeutic effect of AC in HN rats is not clear. METHODS: To establish HN model by feeding high sugar and high fat diet spontaneously hypertensive rats. Blood measurement, HE staining, PAS staining and biochemical analysis and were used to assess the therapeutic effects of AC extracts and western blotting analyzed the underlying mechanisms of AC extracts treatment in the HN rat model. RESULTS: AC extracts could significantly lower systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean blood pressure (MBP) in HN rats; and reduce the expression of total protein (TP), blood urea nitrogen (BUN), microalbuminuria (MALB), creatinine (Cr), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein-cholesterol (LDL-C) concentrations, and also could down-regulate expression of IL-6, MDA and AGEs, up-regulate the expression of SOD in HN rats; HE staining and PAS staining demonstrated that AC extracts could alleviate the histopathological changes in HN rats; western blotting demonstrated that AC extracts could up-regulate the expression of PPARγ and down-regulate the expression of TGFß1 and NF-кB in HN rats. CONCLUSION: The finding of the article demonstrated that AC extracts had the better therapeutic effect for HN, and provided the pharmacological evidences for AC extracts treatment for HN.


Asunto(s)
Hipertensión Renal , Hipertensión , Ratas , Animales , Hipertensión Renal/complicaciones , Hipertensión Renal/patología , Hipertensión/tratamiento farmacológico , Ratas Endogámicas SHR , Colesterol , Riñón , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
6.
J Agric Food Chem ; 71(5): 2377-2389, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36695193

RESUMEN

Salicylic acid (SA) is an important plant hormone and signal required for establishing resistance to diverse pathogens and plant diseases. The abundant polyphenols in tea plants also defend plants from biotic and abiotic stresses. However, whether exogenous SA would increase the resistance of tea plants to adversity and the relationship between SA and polyphenols are still poorly understood. Here, we carried out SA treatment on tea seedlings and performed transcriptome sequencing. SA treatment inhibited the phenylpropanoid and flavonoid metabolic pathways but promoted the lignin metabolic pathways. The increased accumulation of lignin in tea leaves after treating with SA indicated that lignin might coordinate SA, enhance, and improve plant defense and disease resistance. Simultaneously, an SA-inducible flavonoid glucosyltransferase (CsUGT0554) specifically involved in 7-OH site glycosylation was characterized in vitro. These results provided valuable information about the effects of SA on tea seedlings and the molecular basis for SA-mediated immune responses.


Asunto(s)
Camellia sinensis , Camellia sinensis/metabolismo , Ácido Salicílico/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Flavonoides/metabolismo , Polifenoles/metabolismo , Hojas de la Planta/metabolismo , Té/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Curr Mol Pharmacol ; 16(7): 751-758, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36200156

RESUMEN

BACKGROUNDS: Hypertensive nephropathy (HN) is a kind of renal disease caused by essential hypertension that eventually worsens into end-stage renal disease (ESRD). HN could damage the renal tubules, induce kidney damage and renal failure, and increase the risk of stroke, heart disease or death, but there are few ideal drugs for HN treatment. METHODS: In this study, we explored the therapeutic effect of bajijiasu (a compound from Morinda officinalis how and a common traditional Chinese medicine for tonifying the kidney) on the HN rat model. Biochemical analysis, HE staining, and PAS staining were used to assess the effects of bajijiasu on HN rat model. Western blotting was used to analyze the potential mechanisms. RESULTS: The results of HE staining and PAS staining showed that bajijiasu could alleviate the pathological changes in HN rat models; biochemical analysis found that the concentration of Malondialdehyde (MDA), total protein (TP), albumin (ALB), microalbuminuria (MALB), blood urea nitrogen (BUN), creatinine (Cr), triglyceride (TG), and low-density lipoprotein-cholesterol (LDL-C) were significantly decreased compared with the model group after bajijiasu treatment; and bajijiasu could regulate the expression of TNF-α, IL-6, MDA, SOD1 and AGEs in HN rats; the result of western blotting demonstrated that bajijiasu could down-regulate the expression of TGFß1, NOX4, JNK, p- JNK and up-regulate the expression PPARγ and SOD 1 in HN rats. CONCLUSION: Those results demonstrated that bajijiasu could alleviate the pathological changes and physiological and biochemical symptoms of HN rat models by regulating the expression of TGFß1, PPARγ, JNK, p-JNK, NOX4 and SOD1 but could not lower the blood pressure of HN rats. Those pieces of evidence may provide a new therapeutic method for HN treatment.


Asunto(s)
Hipertensión Renal , PPAR gamma , Ratas , Animales , Superóxido Dismutasa-1 , Riñón/patología , Hipertensión Renal/tratamiento farmacológico , Hipertensión Renal/patología
8.
Plant J ; 113(3): 576-594, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36534122

RESUMEN

Plant tannases (TAs) or tannin acyl hydrolases, a class of recently reported carboxylesterases in tannin-rich plants, are involved in the degalloylation of two important groups of secondary metabolites: flavan-3-ol gallates and hydrolyzable tannins. In this paper, we have made new progress in studying the function of tea (Camellia sinensis) (Cs) TA-it is a hydrolase with promiscuous acyltransferase activity in vitro and in vivo and promotes the synthesis of simple galloyl glucoses and flavan-3-ol gallates in plants. We studied the functions of CsTA through enzyme analysis, protein mass spectrometry, and metabolic analysis of genetically modified plants. Firstly, CsTA was found to be not only a hydrolase but also an acyltransferase. In the two-step catalytic reaction where CsTA hydrolyzes the galloylated compounds epigallocatechin-3-gallate or 1,2,3,4,6-penta-O-galloyl-ß-d-glucose into their degalloylated forms, a long-lived covalently bound Ser159-linked galloyl-enzyme intermediate is also formed. Under nucleophilic attack, the galloyl group on the intermediate is transferred to the nucleophilic acyl acceptor (such as water, methanol, flavan-3-ols, and simple galloyl glucoses). Then, metabolic analysis suggested that transient overexpression of TAs in young strawberry (Fragaria × ananassa) fruits, young leaves of tea plants, and young leaves of Chinese bayberry (Myrica rubra) actually increased the total contents of simple galloyl glucoses and flavan-3-ol gallates. Overall, these findings provide new insights into the promiscuous acyltransferase activity of plant TA.


Asunto(s)
Camellia sinensis , Taninos , Taninos/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Té/genética , Té/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo
9.
J Agric Food Chem ; 71(1): 488-498, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36562642

RESUMEN

The high accumulation of galloylated flavan-3-ols in Camellia sp. is a noteworthy phenomenon. We identified a flavan-3-ol galloylation-related functional gene cluster in tannin-rich plant Camellia sp., which included UGT84A22 and SCPL-AT gene clusters. We investigated the possible correlation between the accumulation of metabolites and the expression of SCPL-ATs and UGT84A22. The results revealed that C. sinensis, C. ptilophylla, and C. oleifera accumulated galloylated cis-flavan-3-ols (EGCG), galloylated trans-flavan-3-ols (GCG), and hydrolyzed tannins, respectively; however, C. nitidissima did not accumulate any galloylated compounds. C. nitidissima exhibited no expression of SCPL-AT or UGT84A22, whereas the other three species of Camellia exhibited various expression patterns. This indicated that the functions of the paralogs of SCPL-AT vary. Enzymatic analysis revealed that SCPL5 was neofunctionalized as a noncatalytic chaperone paralog, a type of chaerone-like protein, associating with flavan-3-ol galloylation; moreover, CsSCPL4 was subfunctionalized in association with the galloylation of cis- and trans-flavan-3-ols. In C. nitidissima, an SCPL4 homolog was noted with mutations in two cysteine residues forming a disulfide bond, which suggested that this homolog was defunctionalized. The findings of this study improve our understanding of the functional diversification of SCPL paralogs in Camellia sp.


Asunto(s)
Camellia sinensis , Camellia , Camellia/genética , Flavonoides/química , Taninos/metabolismo , Camellia sinensis/química
10.
J Agric Food Chem ; 70(43): 14096-14108, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36256444

RESUMEN

Polyphenol-rich tea plants are aluminum (Al) accumulators. Whether an association exists between polyphenols and Al accumulation in tea plants remains unclear. This study revealed that the accumulation of the total Al and bound Al contents were both higher in tea samples with high flavonol content than in low, and Al accumulation in tea plants was significantly and positively correlated with their flavonol content. Furthermore, the capability of flavonols combined with Al was higher than that of epigallocatechin gallate (EGCG) and root proanthocyanidins (PAs) under identical conditions. Flavonol-Al complexes signals (94 ppm) were detected in the tender roots and old leaves of tea plants through solid-state 27Al nuclear magnetic resonance (NMR) imaging, and the strength of the signals in the high flavonol content tea samples was considerably stronger than that in the low flavonol content tea samples. This study provides a new perspective for studying Al accumulation in different tea varieties.


Asunto(s)
Aluminio , Camellia sinensis , Aluminio/metabolismo , Camellia sinensis/química , Hojas de la Planta/química , Té/metabolismo , Flavonoles/metabolismo
11.
Plant Mol Biol ; 109(4-5): 579-593, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35553312

RESUMEN

KEY MESSAGE: Two 4-coumarate: CoA ligase genes in tea plant involved in phenylpropanoids biosynthesis and response to environmental stresses. Tea plant is rich in flavonoids benefiting human health. Lignin is essential for tea plant growth. Both flavonoids and lignin defend plants from stresses. The biosynthesis of lignin and flavonoids shares a key intermediate, 4-coumaroyl-CoA, which is formed from 4-coumaric acid catalyzed by 4-coumaric acid: CoA ligase (4CL). Herein, we report two 4CL paralogs from tea plant, Cs4CL1 and Cs4CL2, which are a member of class I and II of this gene family, respectively. Cs4CL1 was mainly expressed in roots and stems, while Cs4CL2 was mainly expressed in leaves. The promoter of Cs4CL1 had AC, nine types of light sensitive (LSE), four types of stress-inducible (SIE), and two types of meristem-specific elements (MSE). The promoter of Cs4CL2 also had AC and nine types of LSEs, but only had two types of SIEs and did not have MSEs. In addition, the LSEs varied in the two promoters. Based on the different features of regulatory elements, three stress treatments were tested to understand their expression responses to different conditions. The resulting data indicated that the expression of Cs4CL1 was sensitive to mechanical wounding, while the expression of Cs4CL2 was UV-B-inducible. Enzymatic assays showed that both recombinant Cs4CL1 and Cs4CL2 transformed 4-coumaric acid (CM), ferulic acid (FR), and caffeic acid (CF) to their corresponding CoA ethers. Kinetic analysis indicated that the recombinant Cs4CL1 preferred to catalyze CF, while the recombinant Cs4CL2 favored to catalyze CM. The overexpression of both Cs4CL1 and Cs4CL2 increased the levels of chlorogenic acid and total lignin in transgenic tobacco seedlings. In addition, the overexpression of Cs4CL2 consistently increased the levels of three flavonoid compounds. These findings indicate the differences of Cs4CL1 and Cs4CL2 in the phenylpropanoid metabolism.


Asunto(s)
Camellia sinensis , Camellia sinensis/metabolismo , Coenzima A/genética , Coenzima A/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Flavonoides/genética , Regulación de la Expresión Génica de las Plantas , Cinética , Lignina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo ,
12.
Nutr Cancer ; 74(9): 3351-3362, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35225106

RESUMEN

Retinoic acid (RA) is the most biologically active metabolite of vitamin A and is important for stomach physiological function. However, little is known about the metabolic status of RA in human gastric lesions. From 2015 to 2018, 1,392 local residents in Lujiang County were recruited into a cross-sectional survey program, which included a questionnaire interview and blood collection. We detected the mRNA and protein expression of RA metabolism-relevant factors in gastric tissues from 68 local patients with gastric lesions. The effects of all-trans retinoic acid (ATRA) supplementation were investigated in a gastric precancerous lesions (GPLs) rat model. In the cross-sectional survey, no significant differences in the level of RA precursor (P > 0.05) between the H. pylori seronegative and seropositive residents were observed. However, the mRNA and protein expression of RA synthesizing enzymes (RDH10 and ALDH1A1) were significantly decreased and catabolic enzyme (CYP26B1) was significantly increased in the patients (P < 0.05). Consistently, in the GPL rat model, we observed a similar disorder; however, ATRA supplementation significantly not only corrected the disorder by increasing Rdh10, Aldh1a1 and decreasing Cyp26b1, but also reduced claudin-18 (P < 0.05). Our study suggested that RA metabolism is disrupted in individuals with gastric lesions, while ATRA supplementation can prevent GPL from progressing to gastric cancer.


Asunto(s)
Lesiones Precancerosas , Tretinoina , Animales , Estudios Transversales , Humanos , Lesiones Precancerosas/prevención & control , ARN Mensajero/genética , Ratas , Ácido Retinoico 4-Hidroxilasa , Estómago , Tretinoina/farmacología
13.
J Agric Food Chem ; 70(7): 2354-2365, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35133826

RESUMEN

Flavonoid glycosides are typical bitter and astringent tasting compounds that contribute to the taste of tea beverages. However, the genes that contribute to the biosynthesis of bitter compounds (e.g., flavanone 7-O-neohesperidoside) in tea plants have yet to be identified. In this study, we identified 194 UDP-glycosyltransferases (UGTs) from the tea transcriptome database. Among them, two genes, CsUGT75L12 and CsUGT79B28, encoding flavonoid 7-O-glycosyltransferase and 7-O-glucoside(1→2)rhamnosyltransferase, respectively, were identified from Camellia sinensis. In vitro, the purified recombinant enzyme rCsUGT75L12 specifically transports the glucose unit from UDP-glucose to the 7-OH position of the flavonoid to produce the respective 7-O-glucoside. rCsUGT79B28 regiospecifically transfers a rhamnose unit from UDP-rhamnose to the 2″-OH position of flavonoid 7-O-glucosides to produce flavonoid 7-O-di-glycosides. Additionally, the expression profiles of the two CsUGTs were correlated with the accumulation patterns of 7-O-glucoside and 7-O-neohesperidoside, respectively, in tea plants. These results indicated that the two CsUGTs are involved in the biosynthesis of bitter flavonoid 7-O-neohesperidoside through the sequential glucosylation and rhamnosylation of flavonoids in C. sinensis. Taken together, our findings provided not only molecular insights into flavonoid di-glycoside metabolism in tea plants but also crucial molecular markers for controlling the bitterness and astringent taste of tea.


Asunto(s)
Camellia sinensis , Camellia sinensis/metabolismo , Flavonoides/metabolismo , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Gusto , Té/metabolismo , Uridina Difosfato/metabolismo
14.
Tree Physiol ; 42(5): 1043-1058, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-34850946

RESUMEN

Unlike that of other crops, the growth of tea plants can be promoted by aluminum, but its regulation mechanism remains unclear. Some endophytes can also promote growth of plant hosts. In this paper, tea roots treated with aluminum were used to study the growth-promoting traits and aluminum tolerance of endophytes. Meta-16S rDNA analysis revealed that Burkholderia was enriched in tea roots after aluminum treatment, and it was the dominant strain for hydroponic tea roots and field tea roots. Actinomycetes constituted the dominant strains in hydroponic tea seedlings treated with aluminum. Sixteen endophytic bacteria, including 12 strains of Firmicutes, 2 strains of Proteobacteria and 2 strains of Actinomycetes, were isolated and identified from hydroponic tea roots treated with different aluminum concentrations. Growth-promoting activity analysis showed that the isolated endophytic bacteria all had more than one plant growth-promoting trait. Among them, B4 (Bacillus nealsonii), B8 (Brevibacterium frigoritolerans) and A2 (Nocardia nova) bacteria each had three growth-promoting traits. Aluminum tolerance ability analysis indicated that endophyte A1 (Leifsonia shinshuensis) had the strongest aluminum tolerance ability, up to 200 mg l-1 aluminum. Plant-bacteria interactions showed that endophytes A1, A2 and B4 and their synthetic community all had a growth-promoting effect on the growth of wheat lateral roots. Moreover, endophytes A1 and B4 alleviated aluminum stress in wheat. Endophyte A1 also promoted the growth of tea cuttings, especially lateral roots, with/without aluminum. Taken together, aluminum enhanced the distribution of aluminum-tolerant and growth-promoting bacteria, thereby promoting the growth of tea roots. This study provides a new aspect for research on the mechanism by which aluminum promotes tea plant growth.


Asunto(s)
Aluminio , Camellia sinensis , Bacterias/genética , Endófitos/fisiología , Desarrollo de la Planta , Raíces de Plantas ,
15.
Food Chem ; 368: 130855, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34496334

RESUMEN

Contents of 20 bioactive compounds in 12 teas produced in Xinyang Region were determined by high performance liquid chromatography. Ultra-high performance liquid chromatography-quadrupole time of flight-mass spectrometry was developed for untargeted metabolomics analysis. Antioxidant activities were measured by 4 various assays. Those teas could be completely divided into green and white tea through principal component analysis, hierarchical cluster analysis and orthonormal partial least squares-discriminant analysis (R2Y = 0.996 and Q2 = 0.982, respectively). The prolonged withering generated 472 differentiated metabolites between white and green tea, prompted significant decreases (variable importance in the projection > 1.0, p-value < 0.05 and fold change > 1.50) of most catechins and 8 phenolic acids to form 4 theaflavins, and benefited for the accumulation of 17 flavonoids and flavonoid glycosides, 8 flavanone and their derivatives, 20 free amino acids, 12 sugars and 1 purine alkaloid. Additionally, kaempferol and taxifolin contributed to 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability of white tea.


Asunto(s)
Antioxidantes , , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Metabolómica , Espectrometría de Masas en Tándem
16.
J Agric Food Chem ; 69(35): 10069-10081, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34410120

RESUMEN

Many studies have shown that phenolic compounds such as lignin and flavonoids enhance plant resistance. Tea plants are rich in flavonoid compounds. Whether these compounds are related to tea plant resistance is unclear. In this study, an interesting conclusion was drawn on the basis of experimental results: in response to abiotic stress (except for sucrose treatment), gene expression was increased in the phenylpropanoid and lignin pathways and was reduced in the flavonoid pathway in tea plants. CsHCTs, the genes located at the branch point of the lignin and flavonoid pathways, are most suitable for regulating the ratio of carbon flow in the lignin pathway and flavonoid synthesis. Enzymatic and genetic modification experiments proved that CsHCTs encode hydroxycinnamoyl-coenzyme A:shikimate/quinate hydroxycinnamoyl transferase in vitro and in vivo. Furthermore, the genetic modification results showed that the contents of phenolic acids and lignin were increased in tobacco and Arabidopsis plants overexpressing CsHCTs, whereas the content of flavonol glycosides was decreased. Both types of transgenic plants showed resistance to many abiotic stresses and bacterial infections. We speculate that CsHCTs participate in regulation of the metabolic flow of carbon from the flavonoid pathway to the chlorogenic acid, caffeoylshikimic acid, and lignin pathways to increase resistance to biotic and abiotic stresses.


Asunto(s)
Arabidopsis , Camellia sinensis , Arabidopsis/genética , Arabidopsis/metabolismo , Camellia sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico ,
17.
Carbohydr Polym ; 265: 118070, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33966834

RESUMEN

Potato is a major food crop with enormous biomass straw, but lignocellulose recalcitrance causes a costly bioethanol conversion. Here, we selected the cytochimera (Cyt) potato samples showing significantly-modified lignocellulose and much increased soluble sugars and starch by 2-4 folds in mature straws. Under two pretreatments (8 min liquid hot water; 5% CaO) at minimized conditions, the potato Cyt straw showed complete enzymatic saccharification. Further performing yeast fermentation with all hexoses released from soluble sugars, starch and lignocellulose in the Cyt straw, this study achieved a maximum bioethanol yield of 24 % (% dry matter), being higher than those of other bioenergy crops as previously reported. Hence, this study has proposed a novel mechanism model on the reduction of major lignocellulose recalcitrance and regulation of carbon assimilation to achieve cost-effective bioethanol production under optimal pretreatments. This work also provides a sustainable strategy for utilization of potato straws with minimum waste release.


Asunto(s)
Biocombustibles , Etanol/metabolismo , Lignina/química , Solanum tuberosum/química , Almidón/química , Biomasa , Celulasa/metabolismo , Celulosa/química , Productos Agrícolas/química , Etanol/química , Fermentación , Hidrólisis , Lignina/metabolismo , Poliploidía , Saccharomyces cerevisiae/metabolismo , Solanum tuberosum/genética , Almidón/metabolismo
18.
J Food Sci ; 86(5): 1681-1691, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33798265

RESUMEN

Xinyang Maojian tea is a kind of famous roasted green tea produced in the middle of China. Ultra-high performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-Q-TOF/MS)-based metabolomics coupled with multivariate statistical analyses, including principal component analysis (PCA) and hierarchical cluster analysis (HCA), were carried out in XMMJTs collected from Luoshan, Shangcheng, and Shihe Counties, respectively. Additionally, seven catechins, four flavonoids, two purine alkaloids, and gallic acid contents were determined by HPLC. Differential metabolites were selected by p-value <0.05, and fold change >1.50 or < 0.66 among 745 detected metabolites in metabolomics analysis. The results showed significant (p < 0.05) differences of three catechins including (-)-epicatechin, (-)-epicatechin gallate, and (-)-gallocatechin gallate, four flavonoids (i.e. quercetin, kaempferol, myricetin, and rutin), and theobromine among three various regions, and significant (p < 0.05) differences of (-)-epicatechin gallate, (-)-epigallocatechin, (+)-catechin, gallic acid, and kaempferol between Shuchazao and Group cultivar. The HCA showed that, except for two samples (i.e. LS 2 and SH 2) of Shuchazao cultivar clustered together, others could be clustered completely according to production place. The 63 relevant differential metabolites could achieve the purpose of region identification through PCA. Kyoto encyclopedia of genes and genomes (KEGG) metabolic pathway analysis elaborated the impact of geographical origin and tea cultivar on physiological metabolism in tea tree. PRACTICAL APPLICATION: Ultra-high performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-Q-TOF/MS)-based liquid chromatography-tendem mass spectrometry (LC-MS/MS) metabolomics coupled with multivariate statistical analyses, such as principal component analysis (PCA) and hierarchical cluster analysis (HCA), revealed 63 differential metabolites related to production place, which contributed to the region identification of Xinyang Maojian teas.


Asunto(s)
Camellia sinensis/clasificación , Cromatografía Líquida de Alta Presión/métodos , Metabolómica/métodos , Té/clasificación , Camellia sinensis/química , Camellia sinensis/genética , Catequina/análogos & derivados , Catequina/análisis , China , Cromatografía Liquida , Flavonoides/análisis , Ácido Gálico/análisis , Análisis Multivariante , Hojas de la Planta/química , Espectrometría de Masas en Tándem , Té/química
19.
Zhongguo Yi Liao Qi Xie Za Zhi ; 45(2): 176-182, 2021 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-33825378

RESUMEN

The methods of monitoring the thermal ablation of tumor are compared and analyzed in recent years. The principle method results and insufficient of ultrasound elastography and quantitative ultrasound imaging are discussed. The results show that ultrasonic tissue signature has great development space in the field of real-time monitoring of thermal ablation, but there are still some problems such as insufficient monitoring accuracy difficulty in whole-course monitoring and insufficient in vivo experiments, so it is impossible to realize clinical application. It is necessary to further study the monitoring method which can realize accurate and real-time detection of ablation zone and transition zone and can be easily combined with the existing ultrasonic equipment.


Asunto(s)
Ablación por Catéter , Diagnóstico por Imagen de Elasticidad , Hipertermia Inducida , Neoplasias , Humanos , Hígado/diagnóstico por imagen , Hígado/cirugía , Neoplasias/diagnóstico por imagen , Neoplasias/cirugía , Ultrasonografía
20.
Food Chem ; 350: 129228, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33618088

RESUMEN

Microbiota influenced quality formation of ripened Pu-erh tea. To understand the effect of each tea-derived fungal strain, tea-leaves were fermented by Aspergillus pallidofulvus PT-3 (ApaPT), Aspergillus sesamicola PT-4 (AsePT) and Penicillium manginii PT-5 (PmaPT), respectively. 14 Phenolic compounds, 3 purine alkaloids, 19 free amino acids and γ-aminobutyric acid contents were determined by HPLC and amino acid analyzer analysis. Additionally, UHPLC-Q-TOF/MS method was developed for LC-MS metabolomics analysis. Multivariate statistical analyses, such as PCA and HCA, exhibited that the chemical profile of PmaPT fermentation was similar to biocidal treatment, but had significant differences with ApaPT and AsePT fermentation. The differentiated metabolites (VIP > 1, p < 0.05 and FC > 1.50 or < 0.66) and one-way ANOVA revealed the impact of three fungal strains in tea-leaves fermentation. APaPT and AsePT contributed to biosynthesis of gallic acid and several flavonoids, such as kaempferol, quercetin and myricetin in the metabolism of phenolic compounds.


Asunto(s)
Aspergillus/metabolismo , Fermentación , Metabolómica , Penicillium/metabolismo , Hojas de la Planta/metabolismo , Té/metabolismo , Cromatografía Líquida de Alta Presión , Ácido Gálico/análisis , Quercetina/análisis , Espectrometría de Masas en Tándem , Té/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA