Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1295-1309, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621977

RESUMEN

The aim of this study was to explore the mechanism of icaritin-induced ferroptosis in hepatoma HepG2 cells. By bioinformatics screening, the target of icariin's intervention in liver cancer ferroptosis was selected, the protein-protein interaction(PPI) network was constructed, the related pathways were focused, the binding ability of icariin and target protein was evaluated by molecular docking, and the impact on patients' survival prognosis was predicted and the clinical prediction model was built. CCK-8, EdU, and clonal formation assays were used to detect cell viability and cell proliferation; colorimetric method and BODIPY 581/591 C1 fluorescent probe were used to detect the levels of Fe~(2+), MDA and GSH in cells, and the ability of icariin to induce HCC cell ferroptosis was evaluated; RT-qPCR and Western blot detection were used to verify the mRNA and protein levels of GPX4, xCT, PPARG, and FABP4 to determine the expression changes of these ferroptosis-related genes in response to icariin. Six intervention targets(AR, AURKA, PPARG, AKR1C3, ALB, NQO1) identified through bioinformatic analysis were used to establish a risk scoring system that aids in estimating the survival prognosis of HCC patients. In conjunction with patient age and TNM staging, a comprehensive Nomogram clinical prediction model was developed to forecast the 1-, 3-, and 5-year survival of HCC patients. Experimental results revealed that icariin effectively inhibited the activity and proliferation of HCC cells HepG2, significantly modulating levels of Fe~(2+), MDA, and lipid peroxidation ROS while reducing GSH levels, hence revealing its potential to induce ferroptosis in HCC cells. Icariin was found to diminish the expression of GPX4 and xCT(P<0.01), inducing ferroptosis in HCC cells, potentially in relation to inhibition of PPARG and FABP4(P<0.01). In summary, icariin induces ferroptosis in HCC cells via the PPARG/FABP4/GPX4 pathway, providing an experimental foundation for utilizing the traditional Chinese medicine icariin in the prevention or treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Flavonoides , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , PPAR gamma , Células Hep G2 , Modelos Estadísticos , Simulación del Acoplamiento Molecular , Pronóstico , Proteínas de Unión a Ácidos Grasos
2.
Int J Biol Macromol ; 263(Pt 1): 130072, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38346615

RESUMEN

MYB transcription factor despite their solid involvement in growth are potent regulator of plant stress response. Herein, we identified a MYB gene named as StoMYB41 in a wild eggplant species Solanum torvum. The expression level of StoMYB41 was higher in root than the tissues including stem, leaf, and seed. It induced significantly by Verticillium dahliae inoculation. StoMYB41 was localized in the nucleus and exhibited transcriptional activation activity. Silencing of StoMYB41 enhanced susceptibility of Solanum torvum against Verticillium dahliae, accompanied by higher disease index. The significant down-regulation of resistance marker gene StoABR1 comparing to the control plants was recorded in the silenced plants. Moreover, transient expression of StoMYB41 could trigger intense hypersensitive reaction mimic cell death, darker DAB and trypan blue staining, higher ion leakage, and induced the expression levels of StoABR1 and NbDEF1 in the leaves of Solanum torvum and Nicotiana benthamiana. Taken together, our data indicate that StoMYB41 acts as a positive regulator in Solanum torvum against Verticillium wilt.


Asunto(s)
Ascomicetos , Solanum melongena , Solanum , Verticillium , Solanum/genética , Verticillium/metabolismo , Ascomicetos/metabolismo , Solanum melongena/genética , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Gossypium/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
J Agric Food Chem ; 72(1): 715-725, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123485

RESUMEN

Cd pollution-safe cultivar (Cd-PSC) is a feasible strategy to minimize Cd contamination in leafy vegetables. The shoot Cd concentrations of 23 Lactuca sativa cultivars under Cd stress ranged from 0.124 to 2.155 mg·kg-1 with a maximum cultivar difference of 8 folds. Typical Cd-PSC C16 (L) and high-Cd-accumulating cultivar C13 (H) were screened to investigate the mechanisms of Cd accumulations in L. sativa through determining Cd concentrations, Cd subcellular distributions, phytochelatin profiles, and phytochelatin biosynthesis-related genes' expressions. Higher Cd distribution in a heat stable fraction in C13 (H) indicated that the high Cd accumulation trait of C13 (H) mainly depended on the Cd-phytochelatin complexes. Root phytochelatin concentrations were significantly elevated in C13 (H) (5.83 folds) than in C16 (L) (2.69 folds) (p < 0.05) under Cd stress. Significantly downregulated expressions of glutathione S-transferase rather than the regulation of phytochelatin synthesis genes in the root of C13 (H) might be responsible for sufficient glutathione supply for phytochelatins synthesis. These findings suggested that phytochelatin elevation in C13 (H) would favor the Cd root to shoot transportation, which provides new insights into the phytochelatin-related cultivar-dependent Cd accumulating characteristic in L. sativa.


Asunto(s)
Fitoquelatinas , Contaminantes del Suelo , Fitoquelatinas/metabolismo , Cadmio/metabolismo , Lactuca/genética , Contaminantes del Suelo/metabolismo , Raíces de Plantas/química
4.
ACS Omega ; 8(23): 20323-20331, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37332800

RESUMEN

In recent years, medicinal plant extracts have received remarkable attention due to their wound-healing properties. In this study, polycaprolactone (PCL) electrospun nanofiber membranes incorporated with different concentrations of pomegranate peel extract (PPE) were prepared. The results of the SEM and FTIR experiments demonstrated that the morphology of nanofiber is smooth, fine, and bead-free, and the PPE was well introduced into the nanofiber membranes. Moreover, the outcomes of the mechanical property tests demonstrated that the nanofiber membrane made of PCL and loaded with PPE exhibited remarkable mechanical characteristics, indicating that it could fulfill the essential mechanical requisites for wound dressings. The findings of the in vitro drug release investigations indicated that PPE was instantly released within 20 h and subsequently released gradually over an extended period by the composite nanofiber membranes. Meanwhile, the DPPH radical scavenging test confirmed that the nanofiber membranes loaded with PPE exhibited significant antioxidant properties. Antimicrobial experiments showed higher PPE loading, and the nanofiber membranes showed higher antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans. The results of the cellular experiments showed that the composite nanofiber membranes were nontoxic and promoted the proliferation of L929 cells. In summary, electrospun nanofiber membranes loaded with PPE can be used as a wound dressing.

5.
J Thorac Dis ; 15(3): 1460-1472, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37065569

RESUMEN

Background: Human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS) immunological nonresponders (HIV/AIDS-INRs) whose CD4+ cell counts do not rebound after highly active antiretroviral therapy (HAART) treatment usually experience severely impaired immune function and high mortality. Traditional Chinese medicine (TCM) has many advantages in the field of AIDS, especially its promotion of patients' immune reconstitution. Accurate differentiation of TCM syndromes is a prerequisite for guiding an effective TCM prescription. However, the objective and biological evidence for identification of the TCM syndromes in HIV/AIDS-INRs remains lacking. Lung and spleen deficiency (LSD) syndrome, a typical HIV/AIDS-INR syndrome, was examined on in this study. Methods: We first performed a proteomic study of LSD syndrome in INRs (INRs-LSD) using tandem mass tag combined with liquid chromatography-tandem mass spectrometry (TMT-LC-MS/MS) and screened them against the healthy and undocumented identifiable groups. The TCM syndrome-specific proteins were subsequently validated based on bioinformatics analysis and enzyme-linked immunosorbent assay (ELISA). Results: A total of 22 differentially expressed proteins (DEPs) were screened in INRs-LSD compared to the healthy group. Based on bioinformatic analysis, these DEPs were found to be mainly associated with the immunoglobin A (IgA)-generated intestinal immune network. In addition, we examined the TCM syndrome-specific proteins alpha-2-macroglobulin (A2M) and human selectin L (SELL) with ELISA and found that they were both upregulated, which was consistent with the proteomic screening results. Conclusions: A2M and SELL were finally identified as potential biomarkers for INRs-LSD, providing a scientific and biological basis for identifying typical TCM syndromes in HIV/AIDS-INRs and an opportunity to build a more effective TCM treatment system for HIV/AIDS-INRs.

6.
Zhongguo Zhong Yao Za Zhi ; 48(4): 1032-1042, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36872274

RESUMEN

Based on transcriptome sequencing technology, the mouse model of prediabetes treated with Huangjing Qianshi Decoction was sequenced to explore the possible mechanism of treating prediabetes. First of all, transcriptome sequencing was performed on the normal BKS-DB mouse group, the prediabetic model group, and the Huangjing Qianshi Decoction treatment group(treatment group) to obtain differentially expressed genes in the skeletal muscle samples of mice. The serum biochemical indexes were detected in each group to screen out the core genes of Huangjing Qianshi Decoction in prediabetes. Gene Ontology(GO) database and Kyoto Encyclopedia of Genes and Genomes(KEGG) database were used to conduct signaling pathway enrichment analysis of differentially expressed genes, and real-time quantitative polymerase chain reaction(RT-qPCR) was used to verify them. The results showed that the levels of fasting blood glucose(FBG), fasting insulin(FINS), insulin resistance index(HOMA-IR), total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) in the mouse model were significantly decreased after treatment with Huangjing Qianshi Decoction. In the results of differential gene screening, there were 1 666 differentially expressed genes in the model group as compared with the normal group, and there were 971 differentially expressed genes in the treatment group as compared with the model group. Among them, interleukin-6(IL-6) and NR3C2 genes, which were closely related to the regulation of insulin resis-tance function, were significantly up-regulated between the model group and the normal group, and vascular endothelial growth factor A(VEGFA) genes were significantly down-regulated between the model group and the normal group. However, the expression results of IL-6, NR3C2, and VEGFA genes were adverse between the treatment group and the model group. GO functional enrichment analysis found that the biological process annotation mainly focused on cell synthesis, cycle, and metabolism; cell component annotation mainly focused on organelles and internal components; and molecular function annotation mainly focused on binding molecular functions. KEGG pathway enrichment analysis found that it involved the protein tyrosine kinase 6(PTK6) pathway, CD28-dependent phosphoinositide 3-kinase/protein kinase B(PI3K/AKT) pathway, p53 pathway, etc. Therefore, Huangjing Qianshi Decoction can improve the state of prediabetes, and the mechanism may be related to cell cycle and apoptosis, PI3K/AKT pathway, p53 pathway, and other biological pathways regulated by IL-6, NR3C2, and VEGFA.


Asunto(s)
Estado Prediabético , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Fosfatidilinositol 3-Quinasas , Factor A de Crecimiento Endotelial Vascular , Interleucina-6 , Transcriptoma , Proteína p53 Supresora de Tumor , Insulina , Colesterol
7.
Anat Rec (Hoboken) ; 306(12): 3106-3119, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-35775967

RESUMEN

HIV/AIDS pandemic remains the world's most severe public health challenge, especially for HIV/AIDS immunological nonresponders (HIV/AIDS-INRs), who tend to have higher mortality. Due to the advantages in promoting patients' immune reconstitution, Traditional Chinese medicine (TCM) has become one of the mainstays of complementary treatments for HIV/AIDS-INRs. Given that effective TCM treatments largely depend on precise syndrome differentiation, there is an increasing interest in exploring biological evidence for the classification of TCM syndromes in HIV/AIDS-INRs. In our study, to identify the typical HIV/AIDS-INRs syndrome, an epidemiological survey was first conducted in the Liangshan prefecture (China), a high HIV/AIDS prevalence region. The key TCM syndrome, Yang deficiency of spleen and kidney (YDSK), was evaluated by using a tandem mass tag combined with liquid chromatography-tandem mass spectrometry (TMT-LC-MS/MS). A total of 62 differentially expressed proteins (DEPs) of YDSK syndrome compared with healthy people were screened out. Comparative bioinformatics analyses showed that DEPs in YDSK syndrome were mainly associated with response to wounding and acute inflammatory response in the biological process. The pathway annotation is mainly enriched in complement and coagulation cascades. Finally, the YDSK syndrome-specific DEPs such as HP and S100A9 were verified by ELISA, and confirmed as potential biomarkers for YDSK syndrome. Our study may lay the biological and scientific basis for the specificity of TCM syndromes in HIV/AIDs-INRs, and may provide more opportunities for the deep understanding of TCM syndromes and the developing more effective and stable TCM treatment for HIV/AIDS-INRs.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Humanos , Síndrome de Inmunodeficiencia Adquirida/diagnóstico , Síndrome de Inmunodeficiencia Adquirida/epidemiología , Medicina Tradicional China/métodos , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem
8.
BMC Geriatr ; 22(1): 898, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434519

RESUMEN

BACKGROUND: The relationship between vitamin D and sarcopenia was inconsistent between men and women. Physical activity (PA) may interact with vitamin D on sarcopenia. However, the sex-specific relationships of vitamin D, PA and sarcopenia have yet elucidated. We aimed to examine the sex differences in the relation between vitamin D status, PA levels, obesity and sarcopenia in community-dwelling middle-aged and older adults, as well as whether vitamin D status is a modifier in the relationship between PA and sarcopenia. METHODS: The current study was a cross-sectional study based on the baseline survey of the West China Health and Aging Trend (WCHAT) study. A total of 3713 participants aged ≥ 50y were included in our study. Sarcopenia was defined according to the Asian Working Group for Sarcopenia (AWGS) 2019 consensus. Obesity was defined by body mass index (BMI) (≥ 28 kg/m2) and body fat mass percentage (≥ 60th percentile in each sex group). 25-hydroxyvitamin D was measured by chemiluminescent microparticle immunoassay and PA was evaluated by a validated China Leisure Time Physical Activity Questionnaire (CLTPAQ). Multinomial logistic regression was performed to examine the relationship between PA, vitamin D and sarcopenia and obesity. RESULTS: Low PA was significantly associated with higher odds of sarcopenia in women only (OR = 1.70,95%CI:1.18,2.46, p < 0.01). Vitamin D deficiency was only associated with sarcopenia in men (OR = 1.85,95%CI: 1.27,2.69, p < 0.01). Low PA was significantly associated with obesity, sarcopenia, and sarcopenic obesity only in participants with serum 25(OH)D < 20 ng/ml. CONCLUSIONS: The role of vitamin D and PA in obesity and sarcopenia was different between men and women, and the relationship between PA and sarcopenia was modified by serum vitamin D status. These findings highlighted the need to supplement vitamin D in individuals with physical inactivity and provide different interventions strategies to sarcopenia in men and women. TRIAL REGISTRATION: Clinical trial number: ChiCTR1800018895.


Asunto(s)
Sarcopenia , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Transversales , Ejercicio Físico , Obesidad/diagnóstico , Obesidad/epidemiología , Sarcopenia/diagnóstico , Sarcopenia/epidemiología , Caracteres Sexuales , Vitamina D , Vitaminas
9.
Huan Jing Ke Xue ; 43(9): 4636-4646, 2022 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-36096604

RESUMEN

Efficient utilization of organic materials based on the rich resources in the karst region can promote soil fertility. Microorganisms have a crucial influence on soil phosphorus availability. phoD is considered to be the encoding phosphatase gene that can reflect the hydrolysis of organophosphorus compounds for the soil bacterial community. Molecular analysis of the phoD-harboring bacterial gene provides insight into promoting soil phosphorus availability under different fertilization managements. However, the effects of organic materials on soil phosphorus fractions associated with phoD-harboring bacterial communities are poorly understood. This study comprehensively investigated the effects of organic materials on soil phosphorus availability and explored environmental drivers of phoD-harboring bacteria in the Karst region. Here, six treatments were designed in the field as follows:non-fertilized control (CK), inorganic fertilization (NPK), inorganic fertilization combined with straw (NPKS), inorganic fertilization combined with manure (NPKM), inorganic fertilization combined with sludge (NPKL), and inorganic fertilization combined with sugarcane ash (NPKA). The phoD-harboring bacterial community in Karst region soil was analyzed using high-throughput sequencing. The results showed that the content of total P (TP), Olsen-P, and Ca2-P increased with the years after organic material application, whereas the content of CaCl2-P first decreased and then increased. Compared to that under the CK treatment, organic material application, especially NPKL treatment, significantly increased soil total nitrogen (TN), TP, Olsen-P, CaCl2-P, and Ca2-P contents, followed by those in the NPKA and NPKM treatments. Correlation analysis showed that the contents of CaCl2-P, Ca2-P, and Olsen-P were significantly positively correlated with soil exchangeable calcium (Ca-ex) content. Redundancy analysis (RDA) showed that TN, Ca-ex, soil organic carbon (SOC), and total potassium (TK) contents were the key factors affecting soil P fractions. Using high-throughput sequencing, we found that only NPKS increased the richness of phoD-harboring bacteria compared to that under the control treatment. No significant difference was observed in the phoD-harboring bacterial community among all treatments. The RDA model selected the Ca-ex, TK, Olsen-P, pH, and SOC as the key environmental predictors for the phoD-harboring bacterial community. In summary, soil phosphorus availability can be improved through the input of organic materials and inorganic fertilizer combined with manure, sludge, and ash. These additions were suitable for nutrient management and sustainable development in farmland soil in the Karst region of Guangxi.


Asunto(s)
Fósforo , Suelo , Bacterias/genética , Cloruro de Calcio , Carbono , China , Estiércol , Nitrógeno/análisis , Fósforo/análisis , Aguas del Alcantarillado , Suelo/química
10.
Front Vet Sci ; 9: 882754, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812848

RESUMEN

In order to study the regulation of Fenugreek seed extract (FSE) on the immunity of broilers, and explore the appropriate amount of FSE in broilers' production, 1-day-old yellow feather broilers with a total of 420 birds were randomly allocated into seven treatments. Each treatment had six replicates, with 10 birds per replicate. The two control groups were the basic fodder group fed with basal diet and the bacitracin zinc group added 30 mg/kg bacitracin zinc to the basal diet. Experimental groups included five levels of FSE (50, 100, 200, 400, and 800 mg/kg FSE to the basal diet, respectively). The pre-test period was 7 days and the formal test lasted for 56 days. The results showed that the average daily gain (ADG) of 50 and 800 mg/kg FSE groups was significantly increased (P < 0.01), and the feed to gain ratio (F/G) of FSE groups was significantly decreased (P < 0.01) compared with the basic fodder and the bacitracin zinc groups. Compared with the basic fodder group, the serum total cholesterol (TC) content in the FSE groups was significantly decreased (P < 0.05), the serum low density lipoprotein cholesterol (LDL-C) content of 50, 100, and 800 mg/kg FSE groups was significantly lower than that of the basic fodder group (P < 0.05). Compared with the basic fodder and bacitracin zinc groups, the serum immunoglobulins (IgG, IgM, IgA) content of 100 and 200 mg/kg FSE groups were significantly increased (P < 0.05). Compared with the bacitracin zinc group, the serum interleukins (IL-1, IL-10) content of 400 mg/kg FSE group were significantly increased (P ≤ 0.05), and the serum interferon-γ (IFN-γ) content of 100 and 200 mg/kg FSE groups was significantly increased (P < 0.05). Compared with the basic fodder group, the lower doses (0-400 mg/kg) of FSE had no significant effect on the mRNA expression of toll-like receptors 4/ myeloid differentiation factor 88/ nuclear factor-κB (TLR4/MyD88/NF-κB) signaling pathways (P > 0.05). The 800 mg/kg FSE treatment group significantly increased the expression levels of nuclear factor-κB (NF-κB) mRNA in the spleen of broilers (P < 0.05). The zinc bacitracin group significantly increased the expression levels of myeloid differentiation factor 88 (MyD88) and nuclear factor-κB (NF-κB) mRNA (P ≤ 0.05). The results showed that FSE could promote the secretion of immunoglobulins, regulate the body's cytokines, and have a positive effect on immunity in broilers. Furthermore, the recommended supplement of FSE is 100 mg/kg in the broiler diet.

11.
Chem Asian J ; 17(15): e202200302, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35582887

RESUMEN

Photothermal therapy (PTT) has drawn extensive attention owing to its noninvasive and great tissue penetration depth. However, the physical encapsulation of photothermal agents may lead to their rapid release. Dual-functional hydrogel systems that integrate functions and carriers can potentially solve this problem. In this work, we successfully developed a dual-functional guanosine(G)-based hydrogel integrating the photothermal effect and localized delivery by introducing dynamic borate ester utilizing the photothermal property of PDA-AuNPs and the self-assembly ability of G. Both in vitro and in vivo results confirmed that the GBPA hydrogel not only exhibited excellent photothermal toxicity, stability, injectability, and biocompatibility, but also possessed high photothermal antitumor activity. These results suggested that the GBPA hydrogel could be used as a dual-functional hydrogel integrating photothermal effect and localized delivery in one system, which would possibly provide a new opportunity for the design of new dual-functional hydrogels for highly efficient cancer therapy.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Boratos , Oro/farmacología , Guanosina/farmacología , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fototerapia , Terapia Fototérmica
12.
Zhongguo Zhong Yao Za Zhi ; 47(4): 1039-1050, 2022 Feb.
Artículo en Chino | MEDLINE | ID: mdl-35285205

RESUMEN

This study analyzed the molecular mechanism of Huangjing Qianshi Decoction(HQD) in the treatment of prediabetes based on network pharmacology and molecular docking. The active components of HQD were identified and screened based on Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP, http://Lsp.nwu.edu.cn/tcmsp.php) and then the targets of the components and the genes related to prediabetes were retrieved, followed by identifying the common targets of the decoction and the disease. The medicinal component-target network was constructed by Cytoscape to screen key components. The protein-protein interaction(PPI) network was established by STRING and hub genes were identified by Cytoscape-CytoNCA, followed by Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) of the hub genes with R-clusterProfi-ler. Thereby, the possible signaling pathways were predicted and the molecular mechanism was deduced. A total of 79 active components of HQD and 785 diabetes-related targets of the components were screened out. The hub genes mainly involved the GO terms of tricarboxylic acid cycle, peptide binding, amide binding, hydrolase activity, and kinase activity regulation, and the KEGG pathways of AGE-RAGE signaling pathway, TNF signaling pathway, AMPK signaling pathway, IL-17 signaling pathway, and insulin signaling pathway. Western blot result showed that HQD-containing serum significantly reduced the expression of AKT1, AGE, and RAGE proteins in insulin resistance model cells. HQD's treatment of prediabetes is characterized by multiple pathways, multiple targets, and multiple levels. The main mechanism is that the components zhonghualiaoine, baicalein, kaempferol, and luteolin act on AKT1 and inhibit the AGE-RAGE axis.


Asunto(s)
Medicamentos Herbarios Chinos , Estado Prediabético , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Humanos , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Farmacología en Red , Estado Prediabético/tratamiento farmacológico , Estado Prediabético/genética
13.
Oxid Med Cell Longev ; 2022: 2152746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222793

RESUMEN

Geraniin, a polyphenol isolated from Phyllanthus amarus, possesses extensive biological and pharmaceutical activities. In this study, we investigated the protective effect against cerebral ischemia/reperfusion (I/R) injury of geraniin and explored its potential mechanism. Middle cerebral artery occlusion/reperfusion (MCAO/R) was used to simulate cerebral I/R injury in vivo, and oxygen-glucose deprivation/reoxygenation (OGD/R) was applied to establish an in vitro model of cerebral I/R injury. In this study, we performed TTC and HE staining and adopted a neurological score method to evaluate the neuroprotective effect of geraniin in vivo and used the CCK-8 assay to assess this effect in vitro. Indices of reactive oxidation capacity were measured in vivo and in vitro to verify the antioxidant capacity of geraniin. TUNEL staining and flow cytometry were applied to measure the apoptosis rate, and Western blotting was performed to assess the expression of apoptosis-related proteins. Finally, the expression of Nrf2 and HO-1 was evaluated in vivo and in vitro by Western blotting. Geraniin significantly reduced the infarct volume, decreased neurological deficit scores, alleviated pathological changes in neurons, and increased the cell survival rate. Geraniin increased the activity of superoxide dismutase (SOD) and decreased the activity of lactate dehydrogenase (LDH) and the contents of malondialdehyde (MDA), nitric oxide (NO), and neuronal nitric oxide synthase (nNOS) in vivo and in vitro. In addition, geraniin significantly reduced the apoptosis. Furthermore, geraniin also evidently increased Nrf2 (total and nuclear) and HO-1 protein expression in vivo and in vitro. Collectively, these results imply that geraniin may exert a protective effect against cerebral I/R injury by suppressing oxidative stress and neuronal apoptosis. The mechanism underlying the protective effect of geraniin is associated with activation of the Nrf2/HO-1 pathway. Our results indicate that geraniin may be a potential drug candidate for the treatment of ischemic stroke.


Asunto(s)
Apoptosis/efectos de los fármacos , Glucósidos/uso terapéutico , Hemo Oxigenasa (Desciclizante)/metabolismo , Taninos Hidrolizables/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Animales , Antioxidantes/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Glucósidos/farmacología , Taninos Hidrolizables/farmacología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Células PC12 , Ratas , Transducción de Señal/efectos de los fármacos
14.
Nat Chem Biol ; 18(1): 91-100, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34931062

RESUMEN

Glutathione peroxidase 4 (GPX4), as the only enzyme in mammals capable of reducing esterified phospholipid hydroperoxides within a cellular context, protects cells from ferroptosis. We identified a homozygous point mutation in the GPX4 gene, resulting in an R152H coding mutation, in three patients with Sedaghatian-type spondylometaphyseal dysplasia. Using structure-based analyses and cell models, including patient fibroblasts, of this variant, we found that the missense variant destabilized a critical loop, which disrupted the active site and caused a substantial loss of enzymatic function. We also found that the R152H variant of GPX4 is less susceptible to degradation, revealing the degradation mechanism of the GPX4 protein. Proof-of-concept therapeutic treatments, which overcome the impaired R152H GPX4 activity, including selenium supplementation, selective antioxidants and a deuterated polyunsaturated fatty acid were identified. In addition to revealing a general approach to investigating rare genetic diseases, we demonstrate the biochemical foundations of therapeutic strategies targeting GPX4.


Asunto(s)
Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Medicina de Precisión , Humanos , Mutación Puntual , Prueba de Estudio Conceptual
15.
Artículo en Inglés | MEDLINE | ID: mdl-34475963

RESUMEN

Baihe Jizihuang Tang (BHT) is a traditional Chinese medicine (TCM) prescription, which can also be used as a nutritional food with medicinal value. Herein, we aimed to clarify the antidepressive effects and molecular mechanism of BHT. Network pharmacological analysis; chronic unpredictable mild stress (CUMS) rat model assessment; behavioral tests; analysis of hippocampal neurotransmitter levels, hippocampal pathological structure, and hypothalamic-pituitary-adrenal (HPA) axis; western blot analysis; 16s RNA sequencing; ultraperformance liquid chromatography (UPLC)/mass spectrometry (MS); and high-performance liquid chromatography (HPLC)/ultraviolet (UV) analysis were used. We found 8 potentially active components and 12 targets from the database. KEGG analysis suggested that BHT significantly affected BDNF/tyrosine receptor kinase B levels, glutamate binding, synaptic transmission based on neurotransmitter signal, and the response to glucocorticoid signaling pathways. Consistently, 7 chemical components were identified using UPLC/quadrupole time-of-flight/MS; among them, regalosides A, B, C, and E were unique components of lily of TCM, and their content in BHT was significantly different: regaloside A > B > E > C. BHT could nourish hippocampal neurons, affect neurotransmitter metabolism, reduce HPA axis hyperactivity, improve deficits in hippocampal tissue structure, and change depressive behavior. Moreover, BHT regulated BDNF expression in the hippocampus and improved intestinal flora deficits in CUMS rats by changing the content of Bifidobacterium, Rothia, Glutamicibacter, and Lactobacillus at the genus level. Collectively, BHT attenuated CUMS-induced depression-like behavior by regulating BDNF and intestinal flora disorder through the brain-gut axis. Therefore, including BHT in the medication list may constitute a potential strategy for preventing depression.

16.
Biomed Pharmacother ; 137: 111420, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33761623

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) includes ulcerative colitis (UC) and Crohn's disease (CD), which is a common idiopathic digestive disease without a specific cure or treatment for improvement. Because Polygoni multiflori Radix has a traditional medicinal use to treat intestinal diseases, and the water extract of this herbal medicine had a positive influence on dextran sulfate sodium (DSS) induced UC model in our study. Meanwhile 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside (TSG) as the major component of the water extract of Polygoni multiflori Radix with yield of more than 10% exhibited the remarkable anti-inflammatory activity in vivo and in vitro, we predicted that TSG may contribute to benefit intestinal tract presented by the water extract of Polygoni multiflori Radix. Therefore, the present study aims to explore the pharmacological effect of this compound on UC model and its possible mechanism to regulate intestinal function through gut microbiota. METHODS: Ulcerative colitis model was established in BALb/c mice by continuously administrating 3% (w/v) DSS aqueous solution for one week. The disease activity index (DAI), colon length, histopathological examination by H&E and the levels of tight junction proteins (TJP) by immunofluorescence staining were performed in ulcerative colitis model following the protocol. Furthermore, the levels of main inflammatory factors like TNF-α, IL-ß, IL-6, and IL-10 were analyzed by the ELIZA kits for the further confirmation of anti-inflammatory activity of TSG on ulcerative colitis model. Finally, 16S rDNA sequencing technology was conducted to explore the composition and relative abundance of gut microbiota of different treatment groups. RESULTS: TSG treatments effectively increased body weight about 5% of those in DSS group (p < 0.001) as well remarkably reduced the DAI scores to the 50% of those in DSS group (p < 0.001) in the UC model. TSG treatments of either 25 mg/kg (TSG-25) or 100 mg/kg (TSG-100) dosage restored epithelial barrier structure and exhibited obviously intact colon histology with reduced signs of inflammatory cells infiltration, preserved epithelia barrier, restored crypt structure, and increased numbers of goblet cells. TSG treatments could markedly lessen the histopathologic score two or three times than those in DSS group (p < 0.001). Especially for TSG-100 treatment, the fluorescence intensity of ZO-1 and Occludin were nearly back to 80% of those in normal group, and were 1.5 times more than those in the DSS group (p < 0.001). Additionally, direct evidence pointed to TSG as a therapeutically active molecule in the prevention and treatment of UC by significantly reducing the production of these pro-inflammatory cytokines like TNF-α, IL-1ß, and IL-6 (p < 0.05-0.001) and increasing the levels of anti-inflammatory cytokine IL-10 (p < 0.05-0.001). Finally, it was found TSG treatments significantly raised the relative abundances of Firmicutes and Bacteroidetes with a dose-dependently and improved the homeostasis of the gut microbiota composition which disrupted by DSS through increasing genus level Lachnospiraceae_NK4A136 and decreasing genus level of Helicobacter, Bacteroides, Parabacteroides. CONCLUSION: The present results suggested that TSG treatments had a desirable pharmacological effect on acute colitis induced by DSS in the mice as well showed the possible mechanism relate to improve the intestinal function through balancing the gut microbiota of intestinal flora.


Asunto(s)
Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/prevención & control , Sulfato de Dextran , Microbioma Gastrointestinal/efectos de los fármacos , Glucósidos/farmacología , Estilbenos/farmacología , Animales , Antiinflamatorios/farmacología , Colitis Ulcerosa/microbiología , Colon/patología , Citocinas/metabolismo , ADN Bacteriano/aislamiento & purificación , Heces/microbiología , Glucósidos/química , Masculino , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales , Plantas Medicinales/química , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , Estilbenos/química , Proteínas de Uniones Estrechas/metabolismo
17.
Analyst ; 145(20): 6617-6624, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32789348

RESUMEN

Electrochemical nanochannel sensors have attracted extensive interest due to their potential applications in biosensing systems. In this work, porous anodized aluminum oxide (AAO) nanochannels are coupled with gold nanoparticles (AuNPs) through a polydopamine (PDA)-induced in situ growth process. It is found that the resulting hybrid nanochannel (denoted as Au-PDA-AAO) can act as both glucose oxidase- and peroxidase-like nanozymes to catalyze the cascade reaction involving glucose. To the best of our knowledge, this is the first report on the synthesis of nanozymes in an AAO nanochannel. Moreover, apart from the nanozyme-catalyzed colorimetric reaction, the Au-PDA-AAO nanochannel could simultaneously serve as a sensitive signal reporter for an electrochemical sensing platform. In such an approach, the glucose oxidation reaction boosts the resistance of the Au-PDA-AAO nanochannel towards ion transport based on the H2O2-mediated size enlargement of AuNPs, resulting in the varied transmembrane ionic current signal of the Au-PDA-AAO nanochannel. On the basis of the changed current-potential properties, the label-free detection of glucose can be achieved with a low detection limit, good reproducibility, and high stability. This work demonstrates the feasibility of the incorporation of versatile nanozymes into AAO nanochannels for mimicking multi-enzymatic catalysis reactions and detecting target analytes.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Óxido de Aluminio , Oro , Peróxido de Hidrógeno , Reproducibilidad de los Resultados
18.
Invest Ophthalmol Vis Sci ; 60(7): 2438-2448, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31158276

RESUMEN

Purpose: Corneal endothelial dysfunction leads to corneal edema, pain, and vision loss. Adequate animal models are needed to study the safety and efficacy of novel cell therapies as an alternative to corneal transplantation. Methods: Primary human corneal endothelial cells (HCECs) were isolated from cadaveric donor corneas, expanded in vitro, transduced to express green fluorescent protein (GFP), loaded with superparamagnetic nanoparticles, and injected into the anterior chamber of adult rabbits immediately after endothelial cell or Descemet's membrane stripping. The same volume of balanced salt solution plus (BSS+) was injected in control eyes. We compared different models for inducing corneal edema in rabbits, and examined the ability of transplanted HCECs to reduce corneal edema over time by measuring central corneal thickness and tracking corneal clarity. GFP-positive donor cells were tracked in vivo using optical coherence tomography (OCT) fluorescence angiography module, and the transplanted cells were confirmed by human nuclei immunostaining. Results: Magnetic HCECs integrated onto the recipient corneas with intact Descemet's membrane, and donor identity was confirmed by GFP expression and immunostaining for human nuclei marker. Donor HCECs formed a monolayer on the posterior corneal surface and expressed HCEC functional markers of tight junction formation. No GFP-positive cells were observed in the trabecular meshwork or on the iris, and intraocular pressure remained stable through the length of the study. Conclusions: Our results demonstrate magnetic cell-based therapy efficiently delivers HCECs to restore corneal transparency without detectable toxicity or adverse effect on intraocular pressure. Magnetic delivery of HCECs may enhance corneal function and should be explored further for human therapies.


Asunto(s)
Trasplante de Células/métodos , Enfermedades de la Córnea/cirugía , Sistemas de Liberación de Medicamentos , Endotelio Corneal/trasplante , Magnetoterapia/métodos , Nanopartículas de Magnetita/química , Animales , Cámara Anterior/citología , Supervivencia Celular/fisiología , Células Cultivadas , Enfermedades de la Córnea/patología , Portadores de Fármacos , Endotelio Corneal/metabolismo , Endotelio Corneal/cirugía , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Presión Intraocular , Sustancias Luminiscentes/metabolismo , Modelos Animales , Conejos , Donantes de Tejidos , Transfección
19.
Sci Rep ; 8(1): 802, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339780

RESUMEN

The role of extractable pool of biochar in crop productivity and soil greenhouse gas (GHGs) emission is not yet clear. In this study, two biochars with and without extraction was added to a paddy before rice transplantation at 20 t·ha-1. Crop yield, plant traits and greenhouse gas emission monitored throughout a rice-wheat rotation. Between the biochar treatments, changes in bulk density and microbial biomass carbon were insignificant. However, the increase in organic carbon was similar between maize and wheat biochars while higher under bulk wheat biochar than extracted one. The increase in available P and K was higher under wheat than maize biochar regardless of extraction. Moreover, the increase in plant traits and grain yield, in rice season only, was higher under bulk than extracted biochars. Yet, there was no difference in changes in GHGs emission between bulk and extracted biochars regardless of feedstock. Nevertheless, increased methane emission for rice season was lower under extracted biochars than bulk ones. Overall, crop productivity rather than GHGs emission was affected by treatment of extraction of biochars. Thus, use of unextracted biochar is recommended for improving soil crop productivity in the paddy soils.


Asunto(s)
Carbón Orgánico/metabolismo , Gases de Efecto Invernadero/análisis , Oryza/crecimiento & desarrollo , Desarrollo de la Planta/efectos de los fármacos , Biomasa , Carbón Orgánico/aislamiento & purificación , Oryza/efectos de los fármacos , Fósforo/análisis , Potasio/análisis , Triticum/química , Zea mays/química
20.
Nat Prod Res ; 32(6): 743-747, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28617100

RESUMEN

Naringin, as a component universal existing in the peel of some fruits or medicinal plants, was usually selected as the material to synthesise bioactive derivates since it was easy to gain with low cost. In present investigation, eight new acacetin-7-O-methyl ether Mannich base derivatives (1-8) were synthesised from naringin. The bioactivity evaluation revealed that most of them exhibited moderate or potent acetylcholinesterase (AChE) inhibitory activity. Among them, compound 7 (IC50 for AChE = 0.82 ± 0.08 µmol•L-1, IC50 for BuChE = 46.30 ± 3.26 µmol•L-1) showed a potent activity and high selectivity compared with the positive control Rivastigmine (IC50 for AChE = 10.54 ± 0.86 µmol•L-1, IC50 for BuChE = 0.26 ± 0.08 µmol•L-1). The kinetic study suggested that compound 7 bind to AChE with mix-type inhibitory profile. Molecular docking study revealed that compound 7 could combine both catalytic active site (CAS) and peripheral active site (PAS) of AChE with four points (Trp84, Trp279, Tyr70 and Phe330), while it could bind with BuChE via only His 20.


Asunto(s)
Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Flavanonas/química , Acetilcolinesterasa/metabolismo , Animales , Butirilcolinesterasa/metabolismo , Dominio Catalítico , Técnicas de Química Sintética , Inhibidores de la Colinesterasa/síntesis química , Evaluación Preclínica de Medicamentos/métodos , Flavonas/química , Concentración 50 Inhibidora , Cinética , Bases de Mannich , Éteres Metílicos/química , Simulación del Acoplamiento Molecular , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA