Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Life Sci ; 330: 121981, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37516430

RESUMEN

Electroacupuncture (EA) has a weight loss effect, but the underlying molecular mechanisms of weight loss with EA have not been fully elucidated. This study aimed to investigate the modulatory effects of EA on the phenotype of hypothalamic microglia in obese mice. A total of 50 male C57BL/6J mice were used in this study. There were three groups in this experiment: The conventional diet group (Chow group), the high-fat diet group (HFD group), and the EA intervention group (HFD + EA group). EA was applied at "Tianshu (ST25)", "Guanyuan (RN4)", "Zusanli (ST36)" and "Zhongwan (RN12)" every day for 10 min. Hematoxylin and eosin (H&E) staining, immunohistochemical staining, and real-time PCR were applied in this study. The results showed that EA intervention was associated with a decrease in body weight, food intake, adipose tissue weight, and adipocyte size. At the same time, EA induced microglia to exhibit an M2 phenotype, representing reduced iNOS/TNF-α and increased Arg-1/IL-10/BDNF, which may be due to the promotion of TREM2 expression. EA also reduced microglia enrichment in the hypothalamic arcuate nucleus and declined TLR4 and IL-6, inhibiting microglia-mediated neuroinflammation. In addition, EA treatment promoted POMC expression, which may be associated with reduced food intake and weight loss in obese mice. This work provides novel evidence of EA against obesity. However, further study is necessary of EA as a therapy for obesity.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Electroacupuntura , Ratones , Animales , Masculino , Núcleo Arqueado del Hipotálamo/metabolismo , Microglía/metabolismo , Ratones Obesos , Ratones Endogámicos C57BL , Hipotálamo/metabolismo , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos
2.
World J Gastroenterol ; 28(34): 5007-5022, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36160643

RESUMEN

BACKGROUND: Slow transit constipation (STC) is a common intestinal disease with increasing incidence. STC results from various factors, such as the enteric nervous system and metabolic changes. As a classical formula of traditional Chinese medicine, Ji-Chuan decoction (JCD) has been extensively and effectively used in STC treatment, yet its pharmacological mechanism remains unclear. AIM: To explore the integrated regulatory pattern of JCD against STC through hyphenated techniques from metabolism, network pharmacology and molecular methods. METHODS: STC model mice were generated by intragastric administration of compound diphenoxylate (10 mg/kg/d) for 14 d. The STC mice in the low dose of JCD (3.04 g/kg), middle dose of JCD (6.08 g/kg) and high dose of JCD (12.16 g/kg) groups were orally administered JCD solution once a day for 2 wk. The acetylcholine (ACH) level was examined by enzyme-linked immunosorbent assay. The pathological features of colon tissue were observed by hematoxylin and eosin staining. The differentially expressed metabolites and metabolic pathways were tested by nontargeted metabolomics. The main targets and core ingredients of JCD were identified by network pharmacology, and the expression of AKT was confirmed by immunohistochemistry. Finally, the pathways involved in JCD treatment were predicted using a combination of differentially expressed metabolites and targets, and intestinal glial cell apoptosis was demonstrated by immunofluorescence. RESULTS: JCD significantly promoted intestinal motility, increased the levels of the excitatory neurotransmitter ACH and reduced intestinal inflammation in STC mice. Untargeted metabolomics results showed that JCD significantly restored metabolic dysfunction and significantly affected taurine and hypotaurine metabolism. Network pharmacology and molecular experiments showed that JCD regulates AKT protein expression, and the core component is quercetin. Combined analysis demonstrated that apoptosis may be an important mechanism by which JCD relieves constipation. Further experiments showed that JCD reduced enteric glial cell (EGC) apoptosis. CONCLUSION: This work demonstrated that reducing EGC apoptosis may be the critical mechanism by which JCD treats STC. These findings call for further molecular research to facilitate the clinical application of JCD.


Asunto(s)
Acetilcolina , Difenoxilato , Animales , Apoptosis , Estreñimiento , Tránsito Gastrointestinal , Ratones , Neuroglía/metabolismo , Proteínas Proto-Oncogénicas c-akt , Quercetina , Taurina
3.
J Microbiol Biotechnol ; 31(4): 510-519, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33746186

RESUMEN

The pathological impact of haze upon the phyllosphere microbiota awaits investigation. A moderate degree of haze environment and a clean control were selected in Chengdu, China. Artemisia argyi, a ubiquitously distributed and extensively applied Chinese herb, was also chosen for experiment. Total genome DNA was extracted from leaf samples, and for metagenome sequencing, an Illumina HiSeq 2500 platform was applied. The results showed that the gene numbers of phyllosphere microbiota derived from haze leaves were lower than those of the clean control. The phyllosphere microbiota derived from both haze and clean groups shared the same top ten phyla; the abundances of Proteobacteria, Actinomycetes and Anorthococcuso of the haze group were substantially increased, while Ascomycetes and Basidiomycetes decreased. At the genus level, the abundances of Nocardia, Paracoccus, Marmoricola and Knoelia from haze leaves were markedly increased, while the yeasts were statistically decreased. KEGG retrieval demonstrated that the functional genes were most annotated to metabolism. An interesting find of this work is that the phyllosphere microbiota responsible for the synthesis of primary and secondary metabolites in A. argyi were significantly increased under a haze environment. Relatively enriched genes annotated by eggNOG belong to replication, recombination and repair, and genes classified into the glycoside hydrolase and glycosyltransferase enzymes were significantly increased. In summary, we found that both structure and function of phyllosphere microbiota are globally impacted by haze, while primary and secondary metabolites responsible for haze tolerance were considerably increased. These results suggest an adaptive strategy of plants for tolerating and confronting haze damage.


Asunto(s)
Contaminación del Aire/efectos adversos , Artemisia/microbiología , Bacterias/clasificación , Hongos/clasificación , Microbiota , Bacterias/efectos de los fármacos , China , Hongos/efectos de los fármacos , Metagenoma , Hojas de la Planta/microbiología , Metabolismo Secundario
4.
Neuroimmunomodulation ; 27(1): 48-57, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32516787

RESUMEN

BACKGROUND AND OBJECTIVES: The enteric nervous system (ENS) dominates the onset of obesity and has been shown to regulate nutrient absorption and energy metabolism. METHODS AND STUDY DESIGN: This study was performed to investigate the role of electroacupuncture in regulating ENS function in obese mice. Obese mice were obtained by high-fat diet. 16S rRNA pyrosequencing, Western blotting, quantitative PCR, and neurotransmitter analysis were used for this purpose. RESULTS: Body weight, Lee index, serum lipid, leptin, and adiponectin levels, and other basic indices were significantly ameliorated after electroacupuncture intervention. The pathological ENS scores, serum neurotransmitter levels, and intestinal transit rate were markedly changed in obese mice. Moreover, electroacupuncture promoted the diversity of gut microbiota. No significant differences were observed 21 and 28 days after electroacupuncture. CONCLUSIONS: These results suggested ENS may be a new treatment approach to obesity.


Asunto(s)
Electroacupuntura , Sistema Nervioso Entérico/fisiología , Obesidad/fisiopatología , Animales , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/fisiología , Tránsito Gastrointestinal/fisiología , Ratones , Ratones Endogámicos C57BL , Neurotransmisores/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA