Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acupunct Med ; 39(4): 358-366, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32744065

RESUMEN

BACKGROUND: Evidence shows that the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway participates in the pathogenesis of neuropathic pain. Our previous study revealed that electroacupuncture (EA) attenuated neuropathic pain via activation of alpha-7 nicotinic acetylcholine receptor (α7nAChR) in the spinal cord. However, whether 2 Hz EA alleviates neuropathic pain by regulating the downstream molecules JAK2/STAT3 has not been fully clarified. METHODS: Paw withdrawal threshold (PWT) was used as a marker of mechanical allodynia in rats with spared nerve injury (SNI). After applying 2 Hz EA on day 3, 7, 14 and 21 post-surgery, spinal expression of JAK2, STAT3 and pro-inflammatory cytokine interleukin (IL)-6 was examined using quantitative reverse transcription and real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. Intrathecal injection of the α7nAChR antagonist alpha-bungarotoxin (α-Bgtx) was used to further explore the mechanism underlying the effects of 2 Hz EA on expression of JAK2/STAT3 in SNI rats. RESULTS: It was found that levels of spinal STAT3 and IL-6 mRNA, as well as levels of phosphorylated (p)-JAK2, p-STAT3 and IL-6 protein, were markedly increased in SNI rats. 2 Hz EA attenuated the SNI-induced up-regulation of p-JAK2, p-STAT3 and IL-6 expression in the spinal cord. Furthermore, intrathecal injection of α-Bgtx (1.0 µg/kg) not only inhibited the effect of 2 Hz EA on mechanical hypersensitivity but also ameliorated the down-regulation of p-JAK2, p-STAT3 and IL-6 expression induced by 2 Hz EA. CONCLUSION: This study revealed that 2 Hz EA attenuated SNI-induced mechanical hypersensitivity and the concomitant up-regulation of spinal JAK2, STAT3 and IL-6 in SNI rats, suggesting that suppression of the JAK2/STAT3 signaling pathway might be the mechanism underlying the therapeutic effect of 2 Hz EA on neuropathic pain.


Asunto(s)
Electroacupuntura , Interleucina-6/metabolismo , Janus Quinasa 2/metabolismo , Neuralgia/metabolismo , Neuralgia/terapia , Traumatismos de los Nervios Periféricos/terapia , Factor de Transcripción STAT3/metabolismo , Médula Espinal/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Interleucina-6/genética , Janus Quinasa 2/genética , Masculino , Neuralgia/genética , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Ratas Sprague-Dawley , Factor de Transcripción STAT3/genética , Transducción de Señal
2.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906633

RESUMEN

Neuropathic pain is more complex and severely affects the quality of patients' life. However, the therapeutic strategy for neuropathic pain in the clinic is still limited. Previously we have reported that electroacupuncture (EA) has an attenuating effect on neuropathic pain induced by spared nerve injury (SNI), but its potential mechanisms remain to be further elucidated. In this study, we designed to determine whether BDNF/TrκB signaling cascade in the spinal cord is involved in the inhibitory effect of 2 Hz EA on neuropathic pain in SNI rats. The paw withdrawal threshold (PWT) of rats was used to detect SNI-induced mechanical hypersensitivity. The expression of BDNF/TrκB cascade in the spinal cord was evaluated by qRT-PCR and Western blot assay. The C-fiber-evoked discharges of wide dynamic range (WDR) neurons in spinal dorsal horn were applied to indicate the noxious response of WDR neurons. The results showed that 2 Hz EA significantly down-regulated the levels of BDNF and TrκB mRNA and protein expression in the spinal cord of SNI rats, along with ameliorating mechanical hypersensitivity. In addition, intrathecal injection of 100 ng BDNF, not only inhibited the analgesic effect of 2 Hz EA on pain hypersensitivity, but also reversed the decrease of BDNF and TrκB expression induced by 2 Hz EA. Moreover, 2 Hz EA obviously reduced the increase of C-fiber-evoked discharges of dorsal horn WDR neurons by SNI, but exogenous BDNF (100 ng) effectively reversed the inhibitory effect of 2 Hz EA on SNI rats, resulting in a remarkable improvement of excitability of dorsal horn WDR neurons in SNI rats. Taken together, these data suggested that 2 Hz EA alleviates mechanical hypersensitivity by blocking the spinal BDNF/TrκB signaling pathway-mediated central sensitization in SNI rats. Therefore, targeting BDNF/TrκB cascade in the spinal cord may be a potential mechanism of EA against neuropathic pain.


Asunto(s)
Electroacupuntura/métodos , Neuralgia/terapia , Células del Asta Posterior/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Masculino , Neuralgia/fisiopatología , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor trkB/metabolismo , Transducción de Señal/fisiología , Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Columna Vertebral
3.
Pain Res Manag ; 2020: 1854363, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351637

RESUMEN

Objective: Neuropathic pain with complex mechanisms has become a major public health problem that greatly impacts patients' quality of life. Therefore, novel and more effective strategies against neuropathic pain need further investigation. Electroacupuncture (EA) has an ameliorating effect on neuropathic pain following spared nerve injury (SNI), but the underlying mechanism remains to be fully clarified. Interferon regulatory factor 8 (IRF8), a critical transcription factor, was reported to be involved in the modulation of neuropathic pain. Here, we focused on exploring whether 2 Hz EA stimulation exerts an inhibitory action on spinal IRF8 in SNI rats. Methods: In this study, SNI rats were treated with 2 Hz EA once every other day for 21 days. Paw withdrawal threshold (PWT) was applied to determine the analgesic effect of 2 Hz EA on SNI rats. The spinal IRF8 and CX3CRl expressions were detected with qRT-PCR and western blot, and immunofluorescence staining was used to evaluate colocation of IRF8 or CX3CRl with microglial activation marker CD11b in the spinal cord. Results: It was found that SNI induced significant elevation of spinal IRF8 and CX3CRl mRNA and protein expression. Additionally, immunofluorescence results showed that SNI elicited the coexpression of IRF8 with CD11b, as well as CX3CRl with CD11b in the spinal cord. Meanwhile, 2 Hz EA treatment of SNI rats not only reduced IRF8 and CX3CRl mRNA and protein expression, but also reversed the coexpression of IRF8 or CX3CRl with CD11b in the spinal cord, along with an attenuation of SNI-evoked mechanical hypersensitivity. Conclusion: This experiment highlighted that 2 Hz EA can inhibit IRF8 expression and microglial activation in the spinal cord of SNI rats. Hence, targeting IRF8 may be a promising therapeutic strategy for 2 Hz EA treatment of neuropathic pain.


Asunto(s)
Electroacupuntura , Factores Reguladores del Interferón/metabolismo , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Médula Espinal/metabolismo , Animales , Masculino , Ratas , Ratas Sprague-Dawley
4.
J Pain Res ; 12: 2851-2863, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695479

RESUMEN

BACKGROUND: Neuropathic pain with complications greatly affects patients worldwide. High mobility group box 1 (HMGB1) has been shown to contribute to the pathogenesis of neuropathic pain; thus, suppression of HMGB1 may provide a novel therapeutic option for neuropathic pain. Electroacupuncture (EA) has been indicated to be effective in attenuating neuropathic pain, but the underlying mechanism remains to be fully clarified. We aim to explore whether 2Hz EA stimulation regulates the spinal HMGB1/NF-κB signaling in neuropathic pain induced by spared nerve injury (SNI). MATERIALS AND METHODS: Paw withdrawal threshold and CatWalk gait analysis were used to assess the effect of 2Hz EA on pain-related behaviors in SNI rats. Administration of 2Hz EA to SNI rats once every other day lasting for 21 days. Expression of spinal protein molecules were detected using Western blot and immunofluorescence staining. RESULTS: It was found that SNI significantly induced mechanical hypersensitivity and decrease of gait parameters, and subsequently increased the levels of HMGB1, TLR4, MyD88, and NF-κB p65 protein expression. 2Hz EA stimulation led to remarkable attenuation of mechanical hypersensitivity, upregulation of spinal HMGB1, TLR4, MyD88, and NF-κB p65 protein expressions induced by SNI, and significant improvement in gait parameters. Furthermore, immunofluorescence staining also confirmed that 2Hz EA obviously suppressed the co-expression of microglia activation marker CD11b and TLR4 or MyD88, as well as the activation of NF-κB p65 in SNI rats. CONCLUSION: This study suggested that blockade of HMGB1/NF-κB signaling in the spinal cord may be a promising therapeutic approach for 2Hz EA management of SNI-induced neuropathic pain.

5.
Brain Res Bull ; 137: 257-264, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29307658

RESUMEN

Alpha-7 nicotinic acetylcholine receptor (α7nAChR) was reported to be involved in the modulation of neuropathic pain. Electroacupuncture (EA) has therapeutic effects on neuropathic pain induced by nerve injury, but the underlying mechanisms remain unclear. The present study was designed to investigate whether α7nAChR participates in the relieving effects of 2 Hz EA on neuropathic pain. Paw withdrawal threshold (PWT) was measured to study the EA-mediated analgesic effect in a rat model of spared nerve injury (SNI). The spinal α7nAChR and IL-1ß expression levels were determined by RT-PCR, Western blot analysis, and immunofluorescence staining. Additionally, immunofluorescence targeting the expression of CD11b, which is a molecular indicator of microglial activation. The results showed that 2 Hz EA stimulation significantly improved the expression of α7nAChR and reduced the production of IL-1ß and CD11b in the spinal cord of rats with SNI-induced neuropathic pain, along with the relief of mechanical hypersensitivity after EA treatment. Moreover, intrathecal injection of alpha-bungarotoxin (α-Bgtx), a selective antagonist for α7nAChR, at the dosage of 1.0 µg/kg, not only suppressed the analgesic effect of EA in SNI rats, but also inhibited the enhancement of α7nAChR expression and the reduction of IL-1ß expression induced by EA. In conclusion, our study indicated that 2 Hz EA reduces SNI-induced mechanical hypersensitivity via upregulating α7nAChR and downregulating IL-1ß and CD11b in the spinal cord of SNI rats, which might be one of the mechanisms underlying its effectiveness in the neuropathic pain.


Asunto(s)
Electroacupuntura , Hiperalgesia/metabolismo , Hiperalgesia/terapia , Neuralgia/metabolismo , Neuralgia/terapia , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Bungarotoxinas/farmacología , Antígeno CD11b/metabolismo , Modelos Animales de Enfermedad , Método Doble Ciego , Electroacupuntura/métodos , Hiperalgesia/patología , Interleucina-1beta/metabolismo , Masculino , Neuralgia/patología , Antagonistas Nicotínicos/farmacología , ARN Mensajero/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Médula Espinal/patología , Tacto , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA