Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 29(2): 1251-1264, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726344

RESUMEN

In this paper, we propose and demonstrate a 4×4 non-blocking optical router utilizing 8 mode (de)multiplexers and a 4×4 microring-based grid network, which can passively assign signals carried by optical wavelength and mode channels from an arbitrary input port to corresponding output ports without additional switch time, realizing the non-blocking property. The proposed device is fabricated on a silicon-on-insulator platform using the standard Complementary Metal-Oxide-Semiconductor (CMOS) fabrication processes. The insertion loss is lower than 5.7 dB including the loss of the auxiliary mode (de)multiplexers (AMUXs), while the crosstalk is lower than -15.6 dB for all routing states. Moreover, the transmission spectra from the input ports to the next cascading device are also measured to demonstrate the feasibility of further expanding via cascading multiple blocks, with the insertion loss and crosstalk lower than 7.1 dB (including the mode coupling loss of AMUXs) and -16.4 dB, respectively. The 12 Gbps dynamic transmission experiment is demonstrated with clear and open eye diagrams, illustrating the utility of the device. The device has high geometrical symmetry and good scalability, we exhibit all solutions to expand the 4×4 optical router to 8×8 and 16×16 optical routers with the advantages and deficiencies of each solution discussed.

2.
Opt Lett ; 44(12): 3154-3157, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31199404

RESUMEN

In this Letter, we first demonstrate periodically and independently tunable double Fano resonances (DFRs) using waveguide-coupled cavities consisting of two silicon microring resonators (MRRs) and a feedback-coupled waveguide. The proposed device is fabricated on the silicon-on-insulator substrate using the standard complementary metal-oxide-semiconductor fabrication process. The DFR can be tuned independently by changing the resonant wavelengths of two MRRs using the thermo-optic effect. The highest extinction ratio of the Fano resonances is measured to be as high as 29.20 dB, which enables this device to be a promising candidate for high-performance multi-wavelength optical switches and high-sensitivity biochemical sensors.

3.
Sci Rep ; 7(1): 6410, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28743874

RESUMEN

We experimentally demonstrate a reconfigurable electro-optic directed logic circuit which can perform any combinatorial logic operation using cascaded carrier-injection micro-ring resonators (MRRs), and the logic circuit is fabricated on the silicon-on-insulator (SOI) substrate with the standard commercial Complementary Metal-Oxide-Semiconductor (CMOS) fabrication process. PIN diodes embedded around MRRs are employed to achieve the carrier injection modulation. The operands are represented by electrical signals, which are applied to the corresponding MRRs to control their switching states. The operation result is directed to the output port in the form of light. For proof of principle, several logic operations of three-operand with the operation speed of 100 Mbps are demonstrated successfully.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA