Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069205

RESUMEN

Clinical imaging studies have revealed that the hypothalamus is activated in migraine patients prior to the onset of and during headache and have also shown that the hypothalamus has increased functional connectivity with the spinal trigeminal nucleus. The dopaminergic system of the hypothalamus plays an important role, and the dopamine-rich A11 nucleus may play an important role in migraine pathogenesis. We used intraperitoneal injections of glyceryl trinitrate to establish a model of acute migraine attack and chronicity in mice, which was verified by photophobia experiments and von Frey experiments. We explored the A11 nucleus and its downstream pathway using immunohistochemical staining and neuronal tracing techniques. During acute migraine attack and chronification, c-fos expression in GABAergic neurons in the A11 nucleus was significantly increased, and inhibition of DA neurons was achieved by binding to GABA A-type receptors on the surface of dopaminergic neurons in the A11 nucleus. However, the expression of tyrosine hydroxylase and glutamic acid decarboxylase proteins in the A11 nucleus of the hypothalamus did not change significantly. Specific destruction of dopaminergic neurons in the A11 nucleus of mice resulted in severe nociceptive sensitization and photophobic behavior. The expression levels of the D1 dopamine receptor and D2 dopamine receptor in the caudal part of the spinal trigeminal nucleus candalis of the chronic migraine model were increased. Skin nociceptive sensitization of mice was slowed by activation of the D2 dopamine receptor in SP5C, and activation of the D1 dopamine receptor reversed this behavioral change. GABAergic neurons in the A11 nucleus were activated and exerted postsynaptic inhibitory effects, which led to a decrease in the amount of DA secreted by the A11 nucleus in the spinal trigeminal nucleus candalis. The reduced DA bound preferentially to the D2 dopamine receptor, thus exerting a defensive effect against headache.


Asunto(s)
Dopamina , Trastornos Migrañosos , Ratones , Humanos , Animales , Dopamina/metabolismo , Núcleo Espinal del Trigémino/metabolismo , Hipotálamo/metabolismo , Receptores de Dopamina D1/metabolismo , Trastornos Migrañosos/metabolismo , Neuronas Dopaminérgicas/metabolismo , Cefalea/metabolismo
2.
Small ; 16(13): e1906206, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32077621

RESUMEN

With the gradual usage of carbon dots (CDs) in the area of antiviral research, attempts have been stepped up to develop new antiviral CDs with high biocompatibility and antiviral effects. In this study, a kind of highly biocompatible CDs (Gly-CDs) is synthesized from active ingredient (glycyrrhizic acid) of Chinese herbal medicine by a hydrothermal method. Using the porcine reproductive and respiratory syndrome virus (PRRSV) as a model, it is found that the Gly-CDs inhibit PRRSV proliferation by up to 5 orders of viral titers. Detailed investigations reveal that Gly-CDs can inhibit PRRSV invasion and replication, stimulate antiviral innate immune responses, and inhibit the accumulation of intracellular reactive oxygen species (ROS) caused by PRRSV infection. Proteomics analysis demonstrates that Gly-CDs can stimulate cells to regulate the expression of some host restriction factors, including DDX53 and NOS3, which are directly related to PRRSV proliferation. Moreover, it is found that Gly-CDs also remarkably suppress the propagation of other viruses, such as pseudorabies virus (PRV) and porcine epidemic diarrhea virus (PEDV), suggesting the broad antiviral activity of Gly-CDs. The integrated results demonstrate that Gly-CDs possess extraordinary antiviral activity with multisite inhibition mechanisms, providing a promising candidate for alternative therapy for PRRSV infection.


Asunto(s)
Carbono/farmacología , Ácido Glicirrínico/farmacología , Viabilidad Microbiana , Síndrome Respiratorio y de la Reproducción Porcina , Animales , Antivirales/química , Antivirales/farmacología , Inmunidad Innata/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Porcinos , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA