Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 301: 115773, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36191660

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panacis Quinquefolii Radix (PQR) is often illegally sulfur fumigated to extend shelf life and improve appearance, but existing regulations of detecting SO2 residues do not accurately identify desulfurized sulfur-fumigated PQR (SF-PQR). Although sulfur-containing derivatives (SCDs) have been reported in some sulfur-fumigated herbs, there is a lack of research on the generation mechanisms and toxicity of SCDs. Our previous study reported the nephrotoxicity of SF-PQR, and there is an urgent necessity to illuminate the mechanism of toxicity as well as its association with SCDs. AIM OF THE STUDY: To investigate the transformation pattern of chemical components and SCDs in SF-PQR, and to disclose the linkage between SCDs and SF-PQR nephrotoxicity. MATERIALS AND METHODS: The extracts of PQR (before and after SF) were detected by the UPLC-LTQ-Orbitrap-MS method, and SCDs were screened as quality markers (Q-markers). The composition of sulfur combustion products was examined by ion chromatography to exploit the conversion mechanism of SCDs. After administration of PQR extracts to mice for two weeks, serum was collected for GC-MS-based untargeted metabolomics study to mine for differential metabolites. The upstream genes were traced by network analysis to probe toxicity targets. Molecular docking was used to uncover the interactions between SCDs and the targets. RESULTS: Thirty-three compounds were identified and 11 SCDs of saponins were screened, including four SO3 sulfonation products and five H2SO3 sulfonation products. Metabolomics study showed significant alterations in serum biochemistry of SF-PQR group, with substantial increases in fumarate and 2-heptanone content, and induced disturbances in glycerolipid metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis in mice. Network analysis revealed that the key toxicity targets were DECR1, PLA2G1B, and CAT. Molecular docking indicated that SCDs had stable interaction forces with the above three toxicity targets. CONCLUSION: SF-PQR caused kidney damage by affecting glycerolipid metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis. Eleven SCDs were potential nephrotoxic substances and Q-markers for identifying SF-PQR. This study is the first to systematically elucidate the mechanism of SF-PQR-related nephrotoxicity, providing a robust basis for the construction of new quality control standards and a global prohibition of sulfur fumigation.


Asunto(s)
Medicamentos Herbarios Chinos , Triptófano , Ratones , Animales , Cromatografía Líquida de Alta Presión/métodos , Simulación del Acoplamiento Molecular , Fumigación , Azufre/toxicidad , Azufre/química , Metabolómica , Medicamentos Herbarios Chinos/química , Tirosina , Fenilalanina
2.
Artículo en Inglés | MEDLINE | ID: mdl-35047047

RESUMEN

Osteoporosis is a degenerative disease that endangers human health. At present, chemical drugs used for osteoporosis have serious side effects. Therefore, it is valuable to search herbs with high safety and good curative effect in antiosteoporosis. Erzhi formula (EZF), an ancient classic compound, has been reported to have a beneficial effect in antiosteoporosis, but its mechanism is unclear. In this paper, the active compounds of EZF were found in Systems Pharmacology Database, and gene targets related to osteoporosis were obtained in GeneCards. The GO functional and KEGG pathway enrichment analysis were performed by Metascape. The network of "components-targets-signal pathway" was constructed by Cytoscape. Next, molecular docking between the active components and hub genes related to the PI3K-Akt signaling pathway was conducted by Autodock. In the verification experiment, the zebrafish induced by prednisolone (PNSL) was used to reproduce glucocorticoid-induced osteoporosis (GIOP) model, and then the reversal effects of EZF were systematically evaluated according to the behavior, skull staining area, bone mineralization area (BMA), average optical density (AOD), and cumulative optical density (COD). Finally, it was shown that 24 components in EZF could regulate 39 common gene targets to exert antiosteoporosis effect. Besides, the main regulatory mechanisms of EZF were 4 signaling pathways: PI3K-Akt, JAK-STAT, AGE-RAGE, and cancer pathway. In PI3K-Akt signaling pathway, wedelolactone, dimethyl wedelolactone, specnuezhenide, ursolic acid, acacetin, beta-sitosterol, apigenin, and kaempferol can bind tightly with EGF, IL-2, and IL-4 genes. Compared with the model group, the moving distance, swimming speed, and cumulative swimming time of zebrafish in EZF group were significantly increased (P < 0.05). Meanwhile, the BMA and COD of zebrafish were significantly improved after the intervention of EZF (P < 0.05). In summary, the 24 components of EZF exert their antiosteoporosis effects by regulating 39 related gene targets, among which the PI3K signaling pathway is crucial. EZF can promote bone formation and reversed GIOP through "multicomponent/multitarget/multipathway" and the medium dose of EZF may be the most suitable concentration for the treatment of GIOP in zebrafish model.

3.
Biomed Res Int ; 2020: 5439853, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32090097

RESUMEN

Glycyrrhizae Radix et Rhizoma (GRER) has been used as a medicinal plant and dietary supplements for its beneficial effect in immunomodulatory effects. Sulfur fumigation (SF) processing was widely used in the storage and maintenance of Chinese medicine because of its convenience and cheapness. However, the disadvantage of SF has been reported, but the systematic study of SF on GRER was deficient. In this paper, the active ingredients, sulfur-fumigated products, immunomodulatory effect, and liver injury of SF-GRER were studied. After SF, the liquiritin decreased from 4.49 ± 0.03 mg/g to 3.94 ± 0.08 mg/g (P < 0.01). Compared with the NSF-GRER group, the SF-GRER group showed a decreased immunoregulation in the thymus index, spleen index, and serum IL-6 and SOD levels (P < 0.05). After 2 weeks of continuous intragastric administration of SF-GRER in healthy mice, the level of serum aspartate aminotransferase (AST) significantly increased (P < 0.05) and the area of liver lesion significantly increased compared with the NSF-GRER (P < 0.05) group. The sulfonated products (m/z, 631.13) corresponding to liquiritin apioside (m/z, 551.17) and isoliquiritin apioside (m/z, 551.17) were screened out in SF-GRER by using UPLC-Orbitrap-MS. The sulfonated products provided in this paper were discovered for the first time and could be powerfully applied for the identification of SF-GRER. SF destroyed the chemical composition of GRER, inhibited immunoregulation, and induced liver injury. The feasibility of this processing method needs to be reconsidered.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Fumigación , Terapia de Inmunosupresión , Hígado/lesiones , Azufre/química , Animales , Medicamentos Herbarios Chinos/química , Flavanonas/farmacología , Glucósidos/farmacología , Glycyrrhiza , Factores Inmunológicos/farmacología , Hígado/efectos de los fármacos , Hígado/fisiopatología , Pruebas de Función Hepática , Masculino , Ratones , Reproducibilidad de los Resultados
4.
J Ethnopharmacol ; 249: 112377, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31707050

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The influence of sulfur fumigation processing on chemical profile, pharmacological activity and safety of Chinese herbs has attracted great attention. Panacis Quinquefolii Radix (PQR) was more widely used as edible and medicinal than Ginseng because of its tonifying effect and characteristic of not getting inflamed. The disadvantage of sulfur fumigated (SF) Ginseng has been reported, but the systematic study of SF-PQR is deficient and urgently needed. AIM OF THE STUDY: To systematically describe the influence of sulfur fumigation on chemical profile, characteristic products, immunoregulation and liver and kidney injury of PQR. MATERIALS AND METHODS: ICP-MS and HPLC-DAD were used to detect 11 inorganic elements and 3 ginsenosides, respectively. Principal component analysis (PCA) was used to distinguish SF-PQR from non-sulfur fumigated (NSF)-PQR by combining the content changes of inorganic elements and ginsenosides. UPLC/Orbitrap-MS was applied to screen the characteristic products (m/z) after sulfur fumigation. For the effectiveness and safety, male KM mice were used to compare the immunomodulatory effects of NSF-PQR or SF-PQR under both healty and cyclophosphamide induced immunosuppressive conditions by net growth rate of body weight, thymus and spleen indices, serum IL-6, SOD, BUN, AST levels, and HE staining of liver and kidney. RESULTS: Sulfur fumigation processing significantly reduced the contents of ginsenosides Rb1, Re and Rg1 with the elevation of inorganic elements in 20 batches PQR. Based on the scatter distribution of PCA, SF-PQR and NSF-PQR can be distinguished. According to the Rt, Precursor ion (m/z) and Product ion (m/z) produced by UPLC/Orbit trap-MS, R1-SO3 (m/z, 1059.53), Re-SO3 (m/z, 1025.55), Rg1-SO3 (m/z, 878.47), Ro-SO3 (m/z, 1035.32), Rb1-SO3 (m/z, 1179.58), and Rk3-SO3 (m/z, 745.40) could be confirmed as important markers for identifying SF-PQR. The effect of SF-PQR on reversing immunosuppression induced by cyclophosphamide was significantly reduced (P < 0.05) evidenced by the inhibition of net growth rate of body weight, immune organ index, IL-6 level and SOD activity. For healthy mice, SF-PQR not only failed to maintain the normal indexes, but also reduced the indexes to lower levels. After 2 weeks of continuous gastric administration, the abnormal liver and kidney functions in healthy mice were damaged and manifested by the increasing of BUN and AST levels, which was consistent with hepatic lesion area and renal tubular injury observed by HE staining. CONCLUSION: Sulfur fumigation processing not only reduced the immunomodulatory effect of PQR, but also brought the hidden danger in liver and kidney injury. The sulfonated products provided in this paper can be applied for the identification of SF-PQR accurately.


Asunto(s)
Fumigación/efectos adversos , Panax/química , Azufre/química , Animales , Cromatografía Líquida de Alta Presión/métodos , Fumigación/métodos , Ginsenósidos/aislamiento & purificación , Ginsenósidos/farmacología , Riñón/efectos de los fármacos , Riñón/patología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Espectrometría de Masas/métodos , Ratones , Raíces de Plantas , Análisis de Componente Principal
5.
Int Immunopharmacol ; 62: 277-286, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30036771

RESUMEN

Two Epimedium-derived isomeric flavonoids, CIT and IT, had the therapeutic effect in osteopenic rats. However, it is difficult to expound their activity differences in anti-osteoporosis. This paper contrasted their anti-osteoporosis activity from the perspective of their affinity to OPG/RANKL protein targets. Molecular docking indicated that both of CIT and IT could interact with the hydrophobic pockets of OPG/RANKL, while CIT was easier and more stable to combine with RANKL. On the contrary, compared with CIT, IT was more inclined to combine with OPG and stay away from combining with RANKL. Subsequently, whether the interaction between isomeric flavonoids and OPG/RANKL targets promoted or suppressed bone resorption was undefined and which was validated by zebrafish embryo and ovariectomized rats in this paper. Compared with IT, the staining area and cumulative optical density of zebrafish skeleton were significantly increased after the treatment of CIT (0.1 µM, p < 0.05). Furthermore, CIT mainly reflected a more significant role in upregulating OPG (p < 0.05), downregulating RANKL (p < 0.05), reducing serum AKP and TRACP level (p < 0.05), enhancing bone biomechanical properties (p < 0.05), increasing bone mineral density (p < 0.05) and improving trabecular bone microarchitecture (p < 0.05) in osteoporotic rats. In conclusion, the combination of isomeric flavonoids (CIT/IT) and OPG/RANKL targets attenuated the excitation effects of OPG or RANKL on RANKL. Because CIT was more firmly combined with RANKL than IT, CIT had stronger anti-osteoporosis effect by inhibiting bone resorption.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Epimedium/química , Flavonoides/uso terapéutico , Osteoporosis/tratamiento farmacológico , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo , Animales , Densidad Ósea/efectos de los fármacos , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Femenino , Flavonoides/química , Flavonoides/aislamiento & purificación , Simulación del Acoplamiento Molecular , Osteoporosis/metabolismo , Osteoprotegerina/genética , Ovariectomía , Unión Proteica , Ligando RANK/genética , Ratas Sprague-Dawley , Esqueleto/efectos de los fármacos , Esqueleto/metabolismo , Estereoisomerismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA