Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Aesthetic Plast Surg ; 48(2): 228-235, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37620564

RESUMEN

OBJECTIVE: We aimed to investigate the safety and efficacy of laser or intense pulsed light therapy for early treatment of surgical scar. METHODS: A literature search was conducted for relevant prospective, randomized controlled trials published in PubMed, Embase, Web of Science, Cochrane Library, CNKI, WanFang Database, and VTTMS between January 2006 and January 2022. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist was used to extract literature data. The risk of bias was assessed by RevMan. Safety was assessed based on the presence of serious adverse reactions (blisters, infections, burns above the second degree), while effectiveness was assessed using the Vancouver Score Scale. RESULTS: 1512 related articles were preliminarily retrieved, including 1211 English articles and 301 Chinese articles. According to the inclusion criteria and exclusion criteria, 12 articles were selected for this analysis. In total, 475 patients were included (laser group, 238; control group, 236). All studies confirmed that the laser group was superior to the control group. In the subgroup analysis of 7 articles, the standardized mean difference was 1.99 (P = 0.0001). CONCLUSIONS: This meta-analysis demonstrates that laser or intense pulsed light therapy is a safe and effective approach for early surgical scar treatment, resulting in improved scar appearance and minimal adverse reactions. LEVEL OF EVIDENCE I: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Asunto(s)
Cicatriz , Tratamiento de Luz Pulsada Intensa , Láseres de Gas , Humanos , Cicatriz/cirugía , Cicatriz/terapia , Resultado del Tratamiento
2.
Immunol Invest ; 52(4): 399-414, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36975047

RESUMEN

Zhenbao Pill contains many Chinese herbal medicinal ingredients and has been proven to have therapeutic effects on the repair of spinal cord injury (SCI). This study attempts to investigate the role of formononetin (FMN), an ingredient of Zhenbao Pill, in regulating neuroinflammation after SCI and the underlying mechanism. Primary microglia isolated from the spinal cord of newborn rats and human microglial clone 3 (HMC3) cells were stimulated with IL-1ß followed by FMN incubation. The cell viability and inflammatory cytokine levels were detected. The target of FMN was predicted and screened using databases. By silencing or overexpression of epidermal growth factor receptor (EGFR), the anti-neuroinflammatory effect of FMN was assessed in vitro. In vivo, FMN was intraperitoneally injected into rats after SCI followed by the neurological function and histopathology examination. The isolated microglia were in high purity, and the different concentrations of FMN incubation had no toxic effects on primary microglia and HMC3 cells. FMN reduced the inflammatory cytokine levels (TNF-α and IL-6) in a concentration-dependent manner. EGFR silencing or FMN incubation decreased p-EGFR and p-p38 levels and down-regulated inflammatory cytokine levels in IL-1ß-stimulated cells or supernatants. Nevertheless, the effects of FMN on microglial inflammation were reversed by EGFR overexpression. In vivo, FMN treatment improved the neuromotor function, repaired tissue injury, and inhibited EGFR/p38MAPK phosphorylation. Formononetin inhibits microglial inflammatory response and contributes to SCI repair via the EGFR/p38MAPK signaling pathway.


Asunto(s)
Microglía , Traumatismos de la Médula Espinal , Humanos , Ratas , Animales , Microglía/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Inflamación/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/farmacología , Receptores ErbB/uso terapéutico , Citocinas/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-30457030

RESUMEN

The metabolic fate and toxicokinetics of organic phosphorus flame retardants catalyzed by cytochrome P450 enzymes (CYPs) are here investigated by in silico simulations, leveraging an active center model to mimic the CYPs, triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate and tris(1,3-dichloro-2-propyl) phosphate as substrates. Our calculations elucidated key main pathways and predicted products, which were corroborated by current in vitro data. Results showed that alkyl OPFRs are eliminated faster than aryl and halogenated alkyl-substituted OPFRs. In addition, we discovered a proton shuttle pathway for aryl hydroxylation of TPHP and P = O bond-assisted H-transfer mechanisms (rather than nonenzymatic hydrolysis) that lead to O-dealkylation/dearylation of phosphotriesters.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Retardadores de Llama/toxicidad , Modelos Químicos , Organofosfatos/química , Organofosfatos/toxicidad , Compuestos Organofosforados/química , Compuestos Organofosforados/toxicidad , Fósforo , Pruebas de Toxicidad/métodos , Toxicocinética
4.
Chem Res Toxicol ; 26(9): 1340-7, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-23941687

RESUMEN

The molecular structures of many endocrine-disrupting chemicals (EDCs) contain groups that ionize under physiological pH conditions. It is unclear whether the neutral and ionic forms have different binding mechanisms with the macromolecular targets. We selected phenolic compounds and human transthyretin (hTTR) as a model system and employed molecular docking with quantum mechanics/molecular mechanics optimizations to probe the mechanisms. The binding patterns of ionizable ligands in hTTR crystal structures were also analyzed. We found that the anionic forms of the phenolic compounds bind stronger than the corresponding neutral forms with hTTR. Electrostatic and van de Waals interactions are the dominant forces for most of the anionic and neutral forms, respectively. Because of the dominant and orientational electrostatic interactions, the -O(-) groups point toward the entry port of the binding site. The aromatic rings of the compounds also form cation-π interactions with the -NH3(+) group of Lys 15 residues in hTTR. Molecular descriptors were selected to characterize the interactions and construct a quantitative structure-activity relationship model on the relative competing potency of chemicals with T4 binding to hTTR. It is concluded that the effects of ionization should not be neglected when constructing in silico models for screening of potential EDCs.


Asunto(s)
Evaluación Preclínica de Medicamentos , Disruptores Endocrinos/química , Disruptores Endocrinos/farmacología , Ensayos Analíticos de Alto Rendimiento , Fenoles/química , Fenoles/farmacología , Prealbúmina/antagonistas & inhibidores , Prealbúmina/química , Aniones/química , Aniones/farmacología , Unión Competitiva/efectos de los fármacos , Simulación por Computador , Humanos , Concentración de Iones de Hidrógeno , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA