Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Asia Pac J Clin Nutr ; 33(1): 111-117, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494693

RESUMEN

BACKGROUND AND OBJECTIVES: While the health promoting effects of green tea polyphenols have been identi-fied among adult, research on children is scarce probably due to safety concerns about caffeine. This study aims to evaluate the safety of decaffeinated green tea polyphenols (DGTP) supplementation in girls with obesity and lay the foundation for its application in children population. METHODS AND STUDY DESIGN: This 12-week randomized, double-blinded, parallel-controlled trial was performed among 62 girls with obesity aged 6 to 10 years old. Participants were allocated to take 400 mg/d DGTP (DGTP group, n = 31) or isodose placebo (Control group, n = 31) at random. Anthropometric measurements and biochemical parameters including hepatic and renal function indicators, serum minerals concentrations, and routine blood parameters, were measured at baseline and the end of this trial. DGTP intake diary was required for each participant to record any abnormal reactions. RESULTS: After the 12-week supplementation, compared to Control group, the uric acid concentration in DGTP group showed a significant decrease (-48.0 ± 83.2 vs -0.01 ± 69.1, µmol/L), within the normal range. Regarding other biochemical indicators, there were no significant differences in changed values between the two groups. Throughout the trial, no adverse effects were reported in either group. CONCLUSIONS: This study indicated that the supplementation of 400 mg/d DGTP for 12 weeks had no adverse health effects in girls with obesity, providing evidence for the DGTP adoption in children research.


Asunto(s)
Polifenoles , , Niño , Femenino , Humanos , Antioxidantes , Suplementos Dietéticos , Método Doble Ciego , Obesidad/tratamiento farmacológico , Polifenoles/farmacología
2.
J Sep Sci ; 46(21): e2300398, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37688352

RESUMEN

Platycodi Radix (PR) is a valuable herb that is widely used in the treatment of chronic obstructive pulmonary disease in clinics. However, the mechanism of action for the treatment of chronic obstructive pulmonary disease remains unclear due to the lack of in vivo studies. Our study established a novel integrated strategy based on ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry, network pharmacology, and molecular docking to systematically analyze the tissue distribution and active compounds of PR in vivo and the therapeutic mechanism of chronic obstructive pulmonary disease. First, tissue distribution studies have shown that the lung is the organ with the highest distribution of PR compounds. Subsequently, network pharmacology results showed that the tumor necrosis factor signaling pathway, interleukin-17 signaling pathway, and mitogen-activated protein kinase signaling pathway were the critical mechanisms of PR against chronic obstructive pulmonary disease. Ultimately, molecular docking results showed that the key targets were stably bound to the corresponding active compounds of PR. Our study is of great significance for the screening of the key effective compounds and the study of the mechanism of action in traditional Chinese medicine and provides data to support the further development and utilization of PR.


Asunto(s)
Medicamentos Herbarios Chinos , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Cromatografía Liquida , Espectrometría de Masas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
3.
J Nutr Biochem ; 108: 109085, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35691596

RESUMEN

This study aimed to explore the potential regulatory pathways of (-)-epigallocatechin-3-gallate (EGCG) in preventing obesity-related precocious puberty. A retrospective analysis on the impact of EGCG on puberty onset in obese girls was conducted on plasma samples collected from a human randomized controlled trial. In the trial, participants consumed EGCG capsules for 12 weeks. In the animal experiment, rats were divided into four groups: normal diet control (NC) group, high-fat diet (HFD) group, NC+EGCG group, and HFD+EGCG group. Blood samples were collected on postnatal days 27, 33, and 36 to detect sexual development indicators. The hypothalamic expressions of kisspeptin/Kiss1R and neurokinin B (NKB)/NK3R signaling were measured by RT-qPCR and Western blot assay. The ovary NKB protein expression was assessed by immunohistochemical assays. Serum NKB level in the EGCG group was lower than the placebo group by 0.599 ng/mL [ß=-0.599, 95% CI: (-1.005, -0.193)], at the end of intervention and after adjusting for confounders (clinical study). In the animal experiment, EGCG intervention could significantly delay the vaginal opening (VO) time of rats fed with HFD. On day 33, EGCG intervention could significantly reduce serum NKB, luteinizing hormone (LH) levels, ovarian NKB protein expression, and endometrial thickness of HFD-fed rats, while EGCG intervention could remarkably increase mRNA and protein expression of NKB/NK3R. EGCG could prevent obesity-related precocious puberty through NKB/NK3R signaling pathway, which may provide a novel insight into the role of EGCG in preventing precocious puberty in obese girls.


Asunto(s)
Camellia sinensis , Catequina , Obesidad , Pubertad Precoz , Animales , Camellia sinensis/química , Catequina/administración & dosificación , Catequina/análogos & derivados , Catequina/farmacología , Femenino , Humanos , Neuroquinina B/genética , Neuroquinina B/metabolismo , Obesidad/complicaciones , Pubertad Precoz/etiología , Pubertad Precoz/prevención & control , Ratas , Estudios Retrospectivos , Transducción de Señal
4.
Front Endocrinol (Lausanne) ; 12: 736724, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712203

RESUMEN

Background: Obesity has been reported to be an important contributing factor for precocious puberty, especially in girls. The effect of green tea polyphenols on weight reduction in adult population has been shown, but few related studies have been conducted in children. This study was performed to examine the effectiveness and safety of decaffeinated green tea polyphenols (DGTP) on ameliorating obesity and early sexual development in girls with obesity. Design: This is a double-blinded randomized controlled trial. Girls with obesity aged 6-10 years old were randomly assigned to receive 400 mg/day DGTP or isodose placebo orally for 12 weeks. During this period, all participants received the same instruction on diet and exercise from trained dietitians. Anthropometric measurements, secondary sexual characteristics, B-scan ultrasonography of uterus, ovaries and breast tissues, and related biochemical parameters were examined and assessed pre- and post-treatment. Results: Between August 2018 and January 2020, 62 girls with obesity (DGTP group n = 31, control group n = 31) completed the intervention and were included in analysis. After the intervention, body mass index, waist circumference, and waist-to-hip ratio significantly decreased in both groups, but the percentage of body fat (PBF), serum uric acid (UA), and the volumes of ovaries decreased significantly only within the DGTP group. After controlling confounders, DGTP showed a significantly decreased effect on the change of PBF (ß = 2.932, 95% CI: 0.214 to 5.650), serum UA (ß = 52.601, 95% CI: 2.520 to 102.681), and ovarian volumes (right: ß = 1.881, 95% CI: 0.062 to 3.699, left: ß = 0.971, 95% CI: 0.019 to 1.923) in girls with obesity. No side effect was reported in both groups during the whole period. Conclusion: DGTP have shown beneficial effects of ameliorated obesity and postponed early sexual development in girls with obesity without any adverse effects. Clinical Trial Registration: [https://clinicaltrials.gov/ct2/show/NCT03628937], identifier [NCT03628937].


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Antioxidantes/uso terapéutico , Obesidad Infantil/diagnóstico por imagen , Polifenoles/uso terapéutico , Pubertad Precoz/tratamiento farmacológico , , Antioxidantes/administración & dosificación , Niño , Método Doble Ciego , Femenino , Humanos , Polifenoles/administración & dosificación , Pubertad Precoz/diagnóstico por imagen , Resultado del Tratamiento , Circunferencia de la Cintura/fisiología
5.
Eur J Pharm Biopharm ; 169: 1-11, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34461213

RESUMEN

Abundant existence of extracellular matrix biological hydrogels in solid tumors precludes most therapeutics to arrive at intracellular target sites, which is probably one of the threatened reasons of pancreatic ductal adenocarcinoma (PDAC) for public health. In this study, we designed a rod-shaped protocell nanoparticle loading with doxorubicin hydrochloride (Dox) and indocyanine green (ICG), denoted as Dox/ICG-RsPNs, for enhanced chemo-photothermal PDAC treatment. The enhanced therapeutic efficacy was achieved by successively enhancing penetration across matrix hydrogels, endocytosis, increasing local temperature under laser irradiation and hyperthermia-triggered Dox release to nucleus. We found that RsPNs with rod shape could easily penetrate across matrix hydrogel, exerting excellent tumor accumulation. Then RsPNs was internalized effectively by BxPC-3 cells via a caveolin-mediated endocytosis pathway. In addition, ICG endowed the Dox/ICG-RsPNs with photothermal effect and the photothermal conversion efficiency was calculated for 16.2%. Under irradiation, a great number of Dox transported to the nucleus via hyperthermia-induced release. Furthermore, we found that the relative tumor volume of Dox/ICG-RsPNs was merely 1.37 under irradiation at the end of pharmacodynamic studies, which was significantly lower than that of other groups. These findings will provide a promise on the rational design of drug delivery system for effective chemo-photothermal combination therapy to treat PDAC.


Asunto(s)
Doxorrubicina/farmacología , Quimioterapia/métodos , Hipertermia Inducida/métodos , Verde de Indocianina/farmacología , Terapia Fototérmica/métodos , Animales , Antibióticos Antineoplásicos/farmacología , Células Artificiales , Disponibilidad Biológica , Línea Celular Tumoral , Colorantes/farmacología , Matriz Extracelular , Humanos , Ratones , Sistema de Administración de Fármacos con Nanopartículas/farmacología , Neoplasias Pancreáticas , Resultado del Tratamiento , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA