Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Biotechnol J ; 22(3): 759-773, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37937736

RESUMEN

Soybean is one of the most economically important crops worldwide and an important source of unsaturated fatty acids and protein for the human diet. Consumer demand for healthy fats and oils is increasing, and the global demand for vegetable oil is expected to double by 2050. Identification of key genes that regulate seed fatty acid content can facilitate molecular breeding of high-quality soybean varieties with enhanced fatty acid profiles. Here, we analysed the genetic architecture underlying variations in soybean seed fatty acid content using 547 accessions, including mainly landraces and cultivars from northeastern China. Through fatty acid profiling, genome re-sequencing, population genomics analyses, and GWAS, we identified a SEIPIN homologue at the FA9 locus as an important contributor to seed fatty acid content. Transgenic and multiomics analyses confirmed that FA9 was a key regulator of seed fatty acid content with pleiotropic effects on seed protein and seed size. We identified two major FA9 haplotypes in 1295 resequenced soybean accessions and assessed their phenotypic effects in a field planting of 424 accessions. Soybean accessions carrying FA9H2 had significantly higher total fatty acid contents and lower protein contents than those carrying FA9H1 . FA9H2 was absent in wild soybeans but present in 13% of landraces and 26% of cultivars, suggesting that it may have been selected during soybean post-domestication improvement. FA9 therefore represents a useful genetic resource for molecular breeding of high-quality soybean varieties with specific seed storage profiles.


Asunto(s)
Ácidos Grasos , Glycine max , Humanos , Ácidos Grasos/metabolismo , Glycine max/genética , Ácidos Grasos Insaturados/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aceites de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo
3.
J Integr Plant Biol ; 63(6): 1036-1053, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33768659

RESUMEN

There is growing interest in expanding the production of soybean oils (mainly triacylglycerol, or TAG) to meet rising feed demand and address global energy concerns. We report that a plastid-localized glycerol-3-phosphate dehydrogenase (GPDH), encoded by GmGPDHp1 gene, catalyzes the formation of glycerol-3-phosphate (G3P), an obligate substrate required for TAG biosynthesis. Overexpression of GmGPDHp1 increases soybean seed oil content with high levels of unsaturated fatty acids (FAs), especially oleic acid (C18:1), without detectably affecting growth or seed protein content or seed weight. Based on the lipidomic analyses, we found that the increase in G3P content led to an elevated diacylglycerol (DAG) pool, in which the Kennedy pathway-derived DAG was mostly increased, followed by PC-derived DAG, thereby promoting the synthesis of TAG containing relatively high proportion of C18:1. The increased G3P levels induced several transcriptional alterations of genes involved in the glycerolipid pathways. In particular, genes encoding the enzymes responsible for de novo glycerolipid synthesis were largely upregulated in the transgenic lines, in-line with the identified biochemical phenotype. These results reveal a key role for GmGPDHp1-mediated G3P metabolism in enhancing TAG synthesis and demonstrate a strategy to modify the FA compositions of soybean oils for improved nutrition and biofuel.


Asunto(s)
Glicerol-3-Fosfato Deshidrogenasa (NAD+)/metabolismo , Glycine max/metabolismo , Ácido Oléico/metabolismo , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/genética , Ácido Oléico/genética , Plantas Modificadas Genéticamente/genética , Triglicéridos/metabolismo
4.
Plant Cell Environ ; 41(9): 2109-2127, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29486529

RESUMEN

Soybean is an important crop providing edible oil and protein source. Soybean oil and protein contents are quantitatively inherited and significantly affected by environmental factors. In this study, meta-analysis was conducted based on soybean physical maps to integrate quantitative trait loci (QTLs) from multiple experiments in different environments. Meta-QTLs for seed oil, fatty acid composition, and protein were identified. Of them, 11 meta-QTLs were located on hot regions for both seed oil and protein. Next, we selected 4 chromosome segment substitution lines with different seed oil and protein contents to characterize their 3 years of phenotype selection in the field. Using strand-specific RNA-sequencing analysis, we profile the time-course transcriptome patterns of soybean seeds at early maturity, middle maturity, and dry seed stages. Pairwise comparison and K-means clustering analysis revealed 7,482 differentially expressed genes and 45 expression patterns clusters. Weighted gene coexpression network analysis uncovered 46 modules of gene expression patterns. The 2 most significant coexpression networks were visualized, and 7 hub genes were identified that were involved in soybean oil and seed storage protein accumulation processes. Our results provided a transcriptome dataset for soybean seed development, and the candidate hub genes represent a foundation for further research.


Asunto(s)
Glycine max/genética , Proteínas de Almacenamiento de Semillas/genética , Semillas/crecimiento & desarrollo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fenotipo , Sitios de Carácter Cuantitativo , Semillas/genética , Análisis de Secuencia de ARN , Aceite de Soja/química , Aceite de Soja/genética
5.
Mol Med Rep ; 17(1): 1591-1598, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29138818

RESUMEN

Osteoporosis is an aging process of skeletal tissues with characteristics of reductions in bone mass and microarchitectural deterioration of bone tissue. The present study aimed to investigate the effects of glucocorticoid­induced osteoporosis on osteoblasts and to examine the roles of ß­ecdysterone (ß­Ecd) involved. In the present study, an in vivo model of osteoporosis was established through the subcutaneous implantation of prednisolone (PRED) into Sprague­Dawley rats, with or without a subcutaneous injection of ß­Ecd (5 or 10 mg/kg body weight). Expression of Beclin­1 and microtubule­associated protein 1A/1B­light chain 3I/II and apoptosis in lumbar vertebrae tissues was measured by immunofluorescence and TUNEL assays, respectively. Serum concentration of calcium and phosphorus, and the activity of tartrate­resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) were measured by biochemical assay. Reverse transcription­quantitative polymerase chain reaction and western blotting was used for detect the expression of related genes and proteins. PRED treatment inhibited bone formation by decreasing bone mineral density, and suppressing the expression of Runt­related transcription factor 2 and bone morphogenetic protein 2, while enhancing the activity of alkaline phosphatase, upregulating the expression of receptor activator of nuclear factor-κB ligand, and increasing the serum content of calcium, phosphorus and tartrate­resistant acid phosphatase in rats. Additionally, PRED was revealed to inhibit autophagy through the downregulation of Beclin­1, autophagy protein 5 and microtubule­associated protein 1A/1B­light chain 3I/II expression, whereas it induced the apoptosis, through the activation of caspase­3 and the suppression of apoptosis regulator BCL2 expression. Notably, the PRED­induced alterations in bone formation, autophagy and apoptosis were revealed to be attenuated by ß­Ecd administration. In conclusion, the findings of the present study suggested that ß­Ecd may be a promising candidate for the development of therapeutic strategies for the treatment of osteoporosis, through the induction of autophagy and the inhibition of apoptosis in vivo.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Ecdisterona/farmacología , Osteoporosis/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Expresión Génica/efectos de los fármacos , Masculino , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Osteoporosis/patología , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA