Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 257: 114925, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37080127

RESUMEN

Large areas of soil in southern China are contaminated with cadmium (Cd) and are deficient in boron (B). Previously, we suggested that B supplementation could reduce Cd accumulation in hot peppers (Capsicum annuum L.); however, the physiological mechanisms underlying this reduction remain unclear. In this study, the uptake and translocation of Cd in hot pepper plants were investigated using hydroponic experiments with different B and Cd treatments. A pot experiment was performed to verify whether B decreased the Cd concentration in hot peppers by minimizing the Cd translocation rate. The results of the dose- and time-dependent experiments showed that B supplementation reduced root Cd uptake and root-to-shoot Cd translocation. Additionally, B supplementation increased the root length, diameter, volume, surface area, and number of root forks and tips, as well as improving the relative absorbance of carboxyl groups under Cd exposure, leading to enhanced Cd fixation in the cell walls of the roots. As a result, the fruit Cd concentration decreased because B inhibited Cd translocation from the roots. Overall, the results demonstrate that B supplementation can reduce Cd accumulation in hot peppers by promoting normal root growth and development and by limiting the uptake and translocation of Cd.


Asunto(s)
Capsicum , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Boro/farmacología , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Transporte Biológico , Raíces de Plantas
2.
J Agric Food Chem ; 71(6): 2784-2794, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36727512

RESUMEN

Proteomic analysis and biochemical tests were employed to investigate the critical biological processes responsible for the different cadmium (Cd) accumulations between two water spinach (Ipomoea aquatica) cultivars, QLQ and T308. QLQ, with lower shoot Cd accumulation and translocation factor than T308, possessed higher expression of cell wall biosynthesis and modification proteins in roots, together with higher lignin and pectin contents, higher pectin methylesterase activity, and lower pectin methylation. The results demonstrated that QLQ could more effectively restrict root-to-shoot Cd translocation by compartmentalizing more Cd in root cell walls. In contrast, T308 showed higher expression of the tricarboxylic acid (TCA) cycle, glutathione (GSH) metabolism, and heavy metal transporter proteins, accompanied by higher GSH content and glutathione S-transferase (GST) and glutathione reductase (GR) activity, which accelerated Cd uptake and translocation in T308. These findings revealed several critical biological processes responsible for cultivar-dependent Cd accumulation in water spinach, which are important for elucidating Cd accumulation and transport mechanisms in different cultivars.


Asunto(s)
Fenómenos Biológicos , Ipomoea , Contaminantes del Suelo , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Ciclo del Ácido Cítrico , Ipomoea/química , Proteómica , Pectinas/metabolismo , Pared Celular/química , Raíces de Plantas/química
3.
Ecotoxicol Environ Saf ; 250: 114501, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603483

RESUMEN

Large areas of farmland soil in southern China are deficient in potassium (K) and are contaminated with cadmium (Cd). Previously, we suggested that the K supplementation could reduce Cd accumulation in sweet potatoes (Ipomoea batatas (L.) Lam). In the present study, we investigated the underlying physiological and molecular mechanisms. A hydroponic experiment with different K and Cd treatments was performed to compare the transcriptome profile and the cell wall structure in the roots of sweet potato using RNA sequencing, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The results showed that K supply inhibits the expressions of IRT1 and YSL3, which are responsible for root Cd uptake under Cd exposure. Furthermore, the expressions of COPT5 and Nramp3 were downregulated by K, which increased Cd retention in the root vacuoles. The upregulation of POD, CAD, INT1 and SUS by K contributed to lignin and cellulose biosynthesis and thickening of root xylem cell wall, which further reduced Cd translocation to the shoot. In addition, K affected the expressions of LHT, ACS, TPS and TPP associated with the production of ethylene and trehalose, which involved in plant resistance to Cd toxicity. In general, K application could decrease the uptake and translocation of Cd in sweet potatoes by regulating the expression of genes associated with Cd transporters and root cell wall components.


Asunto(s)
Cadmio , Ipomoea batatas , Cadmio/toxicidad , Cadmio/metabolismo , Ipomoea batatas/química , Raíces de Plantas/metabolismo , Pared Celular/metabolismo , Potasio/metabolismo
4.
J Hazard Mater ; 432: 128713, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35316635

RESUMEN

Large areas of farmland in southern China are facing environmental problems such as cadmium (Cd) contamination and boron (B) deficiency. The aim of this study was to investigate the biochemical and molecular mechanisms underlying the reduction in Cd accumulation in hot pepper (Capsicum annuum) by B application. A hydroponic experiment was conducted to compare the subcellular distribution of Cd, transcriptome profile, degree of pectin methylation, and glutathione (GSH) synthesis in the roots of hot pepper under different B and Cd conditions. Boron supply promoted root cell wall biosynthesis and pectin demethylation by upregulating related genes and increasing cell wall Cd concentration by 28%. In addition, with the application of B, the proportion of Cd in root cell walls increased from 27% to 37%. Boron supplementation upregulated sulfur metabolism-related genes but decreased cysteine and GSH contents in the roots. As a result, shoot Cd concentration decreased by 27% due to the decrease in GSH, a critical long-distance transport carrier of Cd. Consequently, B supply could reduce the uptake, translocation, and accumulation of Cd in hot pepper by retaining Cd in the root cell walls and decreasing GSH content.


Asunto(s)
Capsicum , Contaminantes del Suelo , Boro/análisis , Cadmio/análisis , Cadmio/toxicidad , Pared Celular/química , Glutatión/análisis , Pectinas , Raíces de Plantas/química , Contaminantes del Suelo/análisis
5.
Ecotoxicol Environ Saf ; 225: 112776, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34537586

RESUMEN

Both cadmium (Cd) contamination and boron (B) deficiency in farmland soils pose a threat to the yield and quality of crops in Southern China. The present study investigated the mechanisms by which B reduces Cd accumulation in rice (Oryza sativa) seedlings. Boron supplementation partially restored the decline in shoot and root biomass caused by Cd treatment (26% and 33%, respectively), with no significant difference between the B+Cd and control groups. We also found that B significantly reduced shoot and root Cd concentrations (by 64% and 25%, respectively) but increased Cd concentration (by 43%) and proportion (from 38% to 55%) in root cell walls. Transcriptome analysis and biochemical tests suggested that B supplementation enhanced lignin and pectin biosynthesis, pectin demethylation, and sulfur and glutathione metabolism. Moreover, B decreased the expression of some Cd-induced transporter-related genes (i.e., HMA2, Nramp1, and several ABC genes). These results indicate that B relieved Cd toxicity and reduced Cd accumulation in rice seedlings by restraining Cd uptake and translocation from root to shoot by improving Cd tolerance and chelation ability. These novel findings would benefit further investigations into how B influences Cd uptake, translocation, detoxification, and accumulation in crops.


Asunto(s)
Oryza , Plantones , Boro/toxicidad , Cadmio/toxicidad , Productos Agrícolas , Oryza/genética
6.
J Agric Food Chem ; 65(43): 9537-9546, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29016122

RESUMEN

A pot experiment was conducted to investigate the interactive effects of cadmium (Cd) and selenium (Se) on their accumulation in three rice cultivars, which remains unclear. The results showed that Se reduced Cd-induced growth inhibition, and increased and decreased Se and Cd concentrations in brown rice, respectively. Cadmium concentrations in all tissues of the hybrid were similar to those in its male parent yet significantly lower than those in its female parent. Selenium reduced Cd accumulation in rice when Cd concentration exceeded 2.0 mg kg-1; however Se accumulation depended on the levels of Cd exposure. Finally, Cd had minimal effect on Se translocation within the three cultivars. We concluded that Cd concentration in brown rice is a heritable trait, making crossbreeding a feasible method for cultivating high-yield, low-Cd rice cultivars. Selenium effectively decreased the toxicity and accumulation of Cd, and Cd affected Se uptake but not translocation.


Asunto(s)
Cadmio/análisis , Oryza/química , Selenio/análisis , Cadmio/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Raíces de Plantas/química , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Semillas/química , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Selenio/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA