Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ultrason Sonochem ; 97: 106442, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37244085

RESUMEN

In this study, the effects of ultrasound treatment on the texture, physicochemical properties and protein structure of composite gels prepared by salted egg white (SEW) and cooked soybean protein isolate (CSPI) at different ratios were investigated. With the increased SEW addition, the ζ-potential absolute values, soluble protein content, surface hydrophobicity and swelling ratio of composite gels showed overall declining trends (P < 0.05), while the free sulfhydryl (SH) contents and hardness of exhibited overall increasing trends (P < 0.05). Microstructural results revealed that composite gels exhibited denser structure with the increased SEW addition. After ultrasound treatment, the particle size of composite protein solutions significantly decreased (P < 0.05), and the free SH contents of ultrasound-treated composite gels were lower than that of untreated composite gels. Moreover, ultrasound treatment enhanced the hardness of composite gels, and promoted the conversion of free water into non-flowable water. However, when ultrasonic power exceeded 150 W, the hardness of composite gels could not be further enhanced. FTIR results indicated that ultrasound treatment facilitated the composite protein aggregates to form a more stable gel structure. The improvement of ultrasound treatment on the properties of composite gels was mainly by promoting the dissociation of protein aggregates, and the dissociated protein particles further interacted to form denser aggregates through disulfide bond, thus facilitating the crosslinking and reaggregation of protein aggregates to form denser gel structure. Overall, ultrasound treatment is an effective approach to improve the properties of SEW-CSPI composite gels, which can improve the potential utilization of SEW and SPI in food processing.


Asunto(s)
Clara de Huevo , Proteínas de Soja , Proteínas de Soja/química , Agregado de Proteínas , Culinaria , Geles/química , Cloruro de Sodio , Agua/química , Compuestos de Sulfhidrilo
2.
Int J Mol Sci ; 13(2): 1747-1761, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22408421

RESUMEN

The current study was performed to investigate mitochondrial protection and anti-aging activity of Astragalus polysaccharides (APS) and the potential underlying mechanism. Lipid peroxidation of liver and brain mitochondria was induced by Fe(2+)-Vit C in vitro. Thiobarbituric acid (TBA) colorimetry was used to measure the content of thiobarbituric acid reactive substances (TBARS). Mouse liver mitochondrial permeability transition (PT) was induced by calcium overload in vitro and spectrophotometry was used to measure it. The scavenging activities of APS on superoxide anion (O(2) (•-)) and hydroxyl radical (•OH), which were produced by reduced nicotinamide adenine dinucleotide (NADH)-N-Methylphenazonium methyl sulfate (PMS) and hydrogen peroxide (H(2)O(2))-Fe(2+) system respectively, were measured by 4-nitrobluetetrazolium chloride (NBT) reduction and Fenton reaction colorimetry respectively. The Na(2)S(2)O(3) titration method was used to measure the scavenging activities of APS on H(2)O(2). APS could inhibit TBARS production, protect mitochondria from PT, and scavenge O(2) (•-), •OH and H(2)O(2) significantly in a concentration-dependent manner respectively. The back of the neck of mice was injected subcutaneously with D-galactose to induce aging at a dose of 100 mg/kg/d for seven weeks. Moreover, the activities of catalase (CAT), surperoxide dismutase (SOD) and glutathione peroxidase (GPx) and anti-hydroxyl radical which were assayed by using commercial monitoring kits were increased significantly in vivo by APS. According to this research, APS protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting mitochondrial PT and increasing the activities of antioxidases. Therefore, APS has the effect of promoting health.


Asunto(s)
Planta del Astrágalo/química , Senescencia Celular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Preparaciones de Plantas/farmacología , Polisacáridos/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/ultraestructura , Permeabilidad de la Membrana Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/ultraestructura , Masculino , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA