RESUMEN
The present study focused on investigating the stability and in vitro simulation characteristics of oil-in-water (O/W) and oleogel-in-water (Og/W) emulsions. Compared with O/W emulsion, the Og/W emulsion exhibited superior stability, with a more evenly spread droplet distribution, and the Og/W emulsion containing 3 % hemp seed protein (HSP) showed better stability against environmental factors, including heat treatment, ionic strength, and changes in pH. Additionally, the stability of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabinol (CBN) and the in vitro digestion of hemp seed oil (HSO) were evaluated. The half-life of CBN in the Og/W emulsion was found to be 131.82 days, with a degradation rate of 0.00527. The in vitro simulation results indicated that the Og/W emulsion effectively delayed the intestinal digestion of HSO, and the bioaccessibility of Δ9-THC and CBN reached 56.0 % and 58.0 %, respectively. The study findings demonstrated that the Og/W emulsion constructed with oleogel and HSP, exhibited excellent stability.
Asunto(s)
Cannabis , Extractos Vegetales , Cannabis/metabolismo , Emulsiones/metabolismo , Cannabinol , Dronabinol , Agua , Compuestos OrgánicosRESUMEN
In this investigation, soybean protein isolate-rutin (SPI-RT) complexes were treated using dynamic high-pressure microfluidization (DHPM). The effects of this process on the physicochemical and thermodynamic properties of SPI were investigated at different pressures. Fourier-transform infrared spectroscopy and fluorescence spectroscopy provided evidence that the SPI structure had been altered. The binding of SPI to RT resulted in a decrease in the percentage of α-helices and random curls as well as an increase in the percentage of ß-sheets. In particular, the α-helix content decreased from 29.84 % to 26.46 %, the random curl content decreased from 17.45 % to 15.57 %, and the ß-sheet content increased from 25.37 % to 26.53 %. Moreover, fluorescence intensity decreased, and the emission peak of the complex was red-shifted by 6 nm, exposing the internal groups. Based on fluorescence quenching analysis, optimal SPI-RT complexation was achieved after 120-MPa DHPM treatment, and molecular docking analysis verified the interaction between SPI and RT. The minimum particle size, maximum absolute potential, and total phenolic content of the complexes were 78.06 nm, 21.4 mV and 74.35 nmol/mg protein, respectively. Furthermore, laser confocal microscopy revealed that the complex particles had the best microstructure. Non-covalent interactions between the two were confirmed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Moreover, the hydrophobicity of the complex particle's surface increased to 16,045 after 120-MPa DHPM treatment. The results of this study suggest that DHPM strongly promotes the improvement of the physicochemical properties of SPI, and provide a theoretical groundwork for further research.