Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Orthop Translat ; 45: 66-74, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38511124

RESUMEN

Background: The musculoskeletal system contains an extensive network of lymphatic vessels. Decreased lymph flow of the draining collecting lymphatics usually occurs in clinic after traumatic fractures. However, whether defects in lymphatic drainage can affect fracture healing is unclear. Methods: To investigate the effect of lymphatic dysfunction on fracture healing, we used a selective VEGFR3 tyrosine kinase inhibitor to treat tibial fractured mice for 5 weeks versus a vehicle-treated control. To ensure successfully establishing deceased lymphatic drainage model for fractured mice, we measured lymphatic clearance by near infrared indocyanine green lymphatic imaging (NIR-ICG) and the volume of the draining popliteal lymph nodes (PLNs) by ultrasound at the whole phases of fracture healing. In addition, hindlimb edema from day 0 to day 7 post-fracture, pain sensation by Hargreaves test at day 1 post-fracture, bone histomorphometry by micro-CT and callus composition by Alcian Blue-Hematoxylin/Orange G staining at day 14 post-fracture, and bone quality by biomechanical testing at day 35 post-fracture were applied to evaluate fracture healing. To promote fracture healing via increasing lymphatic drainage, we then treated fractured mice with anti-mouse podoplanin (PDPN) neutralizing antibody or isotype IgG antibody for 1 week to observe lymphatic drainage function and assess bone repair as methods described above. Results: Compared to vehicle-treated group, SAR-treatment group significantly decreased lymphatic clearance and the volume of draining PLNs. SAR-treatment group significantly increased soft tissue swelling, and reduced bone volume (BV)/tissue volume (TV), trabecular number (Tb.N), woven bone and biomechanical properties of fracture callus. In addition, anti-PDPN treated group significantly reduced the number of CD41+ platelets in PLNs and increased the number of pulsatile lymphatic vessels, lymphatic clearance and the volume of PLNs. Moreover, anti-PDPN treated group significantly reduced hindlimb edema and pain sensation and increased BV/TV, trabecular number (Tb.Th), woven bone and biomechanical properties of fracture callus. Conclusions: Inhibition of proper lymphatic drainage function delayed fracture healing. Use of a anti-PDPN neutralizing antibody reduced lymphatic platelet thrombosis (LPT), increased lymphatic drainage and improved fracture healing. The translational potential of this article: (1) We demonstrated lymphatic drainage function is crucial for fracture healing. (2) To unblock the lymphatic drainage and prevent the risk of bleeding and mortality by blood thinner, we demonstrated PDPN neutralizing antibody is a novel and safe way forward in the treatment of bone fracture healing by eliminating LPT and increasing lymphatic drainage.

2.
Arthritis Rheumatol ; 75(6): 923-936, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36625730

RESUMEN

OBJECTIVE: The synovial lymphatic system (SLS) removes catabolic factors from the joint. Vascular endothelial growth factor C (VEGF-C) and its receptor, VEGFR-3, are crucial for lymphangiogenesis. However, their involvement in age-related osteoarthritis (OA) is unknown. This study was undertaken to determine whether the SLS and the VEGF-C/VEGFR-3 pathway contribute to the development and progression of age-related OA, using a murine model of naturally occurring joint disease. METHODS: SLS function was assessed in the knees of young (3-month-old) and aged (19-24-month-old) male and female C57BL/6J mice via a newly established in vivo IVIS-dextran imaging approach, which, in addition to histology, was used to assess the effects of VEGF-C treatment on SLS function and OA pathology in aged mice. RNA-sequencing of synovial tissue was performed to explore molecular mechanisms of the disease in the mouse knee joints. RESULTS: Results showed that aged mice had impaired SLS function, including decreases in joint clearance (mean T1/2 of signal intensity clearance, 2.8 hours in aged mice versus 0.5 hours in young mice; P < 0.0001), synovial influx (mean ± SD 1.7 ± 0.8% in aged mice versus 4.1 ± 1.9% in young mice; P = 0.0004), and lymph node draining capacity (mean ± SD epifluorescence total radiant intensity ([photons/second]/[µW/cm2 ]) 1.4 ± 0.8 in aged mice versus 3.7 ± 1.2 in young mice; P < 0.0001). RNA-sequencing of the synovial tissue showed that Vegf-c and Vegfr3 signaling genes were decreased in the synovium of aged mice. VEGF-C treatment resulted in improvements in SLS function in aged mice, including increased percentage of signal intensity joint clearance (mean ± SD 63 ± 9% in VEGF-C-treated aged mice versus 52 ± 15% in vehicle-treated aged mice; P = 0.012), increased total articular cartilage cross-sectional area (mean ± SD 0.38 ± 0.07 mm2 in VEGF-C-treated aged mice versus 0.26 ± 0.07 mm2 in vehicle-treated aged mice; P < 0.0001), and decreased percentage of matrix metallopeptidase 13-positive staining area within total synovial area in 22-month-old VEGF-C-treated mice versus 22-month-old vehicle-treated mice (mean ± SD decrease 7 ± 2% versus 4 ± 1%; P = 0.0004). CONCLUSION: SLS function is reduced in the knee joints of aged mice due to decreased VEGF-C/VEGFR-3 signaling. VEGF-C treatment attenuates OA joint damage and improves synovial lymphatic drainage in aged mice. The SLS and VEGF-C/VEGFR-3 signaling represent novel physiopathologic mechanisms that could potentially be used as therapeutic targets for age-related OA.


Asunto(s)
Osteoartritis , Factor C de Crecimiento Endotelial Vascular , Ratones , Masculino , Femenino , Animales , Receptor 3 de Factores de Crecimiento Endotelial Vascular , Ratones Endogámicos C57BL , Osteoartritis/metabolismo , Membrana Sinovial/metabolismo , ARN/metabolismo
3.
Sci Rep ; 12(1): 12751, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882971

RESUMEN

While rheumatoid arthritis patients and tumor necrosis factor transgenic (TNF-Tg) mice with inflammatory-erosive arthritis display lymphatic drainage deficits, the mechanisms responsible remain unknown. As ultrastructural studies of joint-draining popliteal lymphatic vessels (PLVs) in TNF-Tg mice revealed evidence of lymphatic muscle cell (LMC) damage, we aimed to evaluate PLV-LMC coverage in TNF-Tg mice. We tested the hypothesis that alpha smooth muscle actin (αSMA)+ PLV-LMC coverage decreases with severe inflammatory-erosive arthritis, and is recovered by anti-TNF therapy facilitated by increased PLV-LMC turnover during amelioration of joint disease. TNF-Tg mice with established disease received anti-TNF monoclonal antibody (mAb) or placebo IgG isotype control mAb therapy (n = 5) for 6-weeks, while wild-type (WT) littermates (n = 8) received vehicle (PBS). Bromodeoxyuridine (BrdU) was also administered daily during the treatment period to monitor PLV-LMC turnover. Effective anti-TNF therapy was confirmed by longitudinal assessment of popliteal lymph node (PLN) volume via ultrasound, PLV contraction frequency via near-infrared imaging of indocyanine green, and ankle bone volumes via micro-computed tomography (micro-CT). Terminal knee micro-CT, and ankle and knee histology were also performed. PLVs were immunostained for αSMA and BrdU to evaluate PLV-LMC coverage and turnover, respectively, via whole-mount fluorescent microscopy. Anti-TNF therapy reduced PLN volume, increased talus and patella bone volumes, and reduced tarsal and knee synovial areas compared to placebo treated TNF-Tg mice (p < 0.05), as expected. Anti-TNF therapy also increased PLV contraction frequency at 3-weeks (from 0.81 ± 1.0 to 3.2 ± 2.0 contractions per minute, p < 0.05). However, both anti-TNF and placebo treated TNF-Tg mice exhibited significantly reduced αSMA+ PLV-LMC coverage compared to WT (p < 0.05). There was no correlation of αSMA+ PLV-LMC coverage restoration with amelioration of inflammatory-erosive arthritis. Similarly, there was no difference in PLV-LMC turnover measured by BrdU labeling between WT, TNF-Tg placebo, and TNF-Tg anti-TNF groups with an average of < 1% BrdU+ PLV-LMCs incorporated per week. Taken together these results demonstrate that PLV-LMC turnover in adult mice is limited, and that recovery of PLV function during amelioration of inflammatory-erosive arthritis occurs without restoration of αSMA+ LMC coverage. Future studies are warranted to investigate the direct and indirect effects of chronic TNF exposure, and the role of proximal inflammatory cells on PLV contractility.


Asunto(s)
Artritis Reumatoide , Vasos Linfáticos , Animales , Anticuerpos Monoclonales/farmacología , Artritis Reumatoide/patología , Bromodesoxiuridina , Vasos Linfáticos/patología , Ratones , Ratones Transgénicos , Células Musculares , Inhibidores del Factor de Necrosis Tumoral/farmacología , Factor de Necrosis Tumoral alfa/uso terapéutico , Microtomografía por Rayos X
4.
Arthritis Rheumatol ; 71(2): 244-257, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30144298

RESUMEN

OBJECTIVE: To investigate the roles of the synovial lymphatic system in the severity and progression of joint tissue damage and functional responses of synovial lymphatic endothelial cells (LECs) to macrophage subsets, and to evaluate the therapeutic potential of the proteasome inhibitor bortezomib (BTZ) in a mouse model of experimental posttraumatic osteoarthritis (OA). METHODS: C57BL/6J wild-type mice received a meniscal ligamentous injury to induce posttraumatic knee OA. Lymphangiogenesis was blocked by a vascular endothelial growth factor receptor 3 (VEGFR-3) neutralizing antibody. Synovial lymphatic drainage was examined by near-infrared imaging. Joint damage was assessed by histology. RNA-sequencing and pathway analyses were applied to synovial LECs. Macrophage subsets in the mouse synovium were identified by flow cytometry and immunofluorescence staining. M1 and M2 macrophages were induced from mouse bone marrow cells, and their effects on LECs were examined in cocultures in the presence or absence of BTZ. The effects of BTZ on joint damage, LEC inflammation, and synovial lymphatic drainage were examined. RESULTS: Injection of a VEGFR-3 neutralizing antibody into the joints of mice with posttraumatic knee OA reduced synovial lymphatic drainage and accelerated joint tissue damage. Synovial LECs from the mouse OA joints had dysregulated inflammatory pathways and expressed high levels of inflammatory genes. The number of M1 macrophages was increased in the knee joints of mice with posttraumatic OA, thereby promoting the expression of inflammatory genes by LECs; this effect was blocked by BTZ. Treatment with BTZ decreased cartilage loss, reduced the expression of inflammatory genes by LECs, and improved lymphatic drainage in the knee joints of mice with posttraumatic OA. CONCLUSION: Experimental posttraumatic knee OA is associated with decreased synovial lymphatic drainage, increased numbers of M1 macrophages, and enhanced inflammatory gene expression by LECs, all of which was improved by treatment with BTZ. Intraarticular administration of BTZ may represent a new therapy for the restoration of synovial lymphatic function in subjects with posttraumatic knee OA.


Asunto(s)
Bortezomib/farmacología , Células Endoteliales/efectos de los fármacos , Vasos Linfáticos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Osteoartritis de la Rodilla/inmunología , Inhibidores de Proteasoma/farmacología , Membrana Sinovial/efectos de los fármacos , Animales , Anticuerpos Neutralizantes/farmacología , Bortezomib/uso terapéutico , Técnicas de Cocultivo , Progresión de la Enfermedad , Inflamación , Traumatismos de la Rodilla/complicaciones , Linfangiogénesis/efectos de los fármacos , Vasos Linfáticos/inmunología , Macrófagos/inmunología , Ratones , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/etiología , Inhibidores de Proteasoma/uso terapéutico , Espectroscopía Infrarroja Corta , Receptor 3 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 3 de Factores de Crecimiento Endotelial Vascular/inmunología
5.
Nat Rev Rheumatol ; 14(2): 94-106, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29323343

RESUMEN

Although clinical outcomes for patients with rheumatoid arthritis (RA) have greatly improved with the use of biologic and conventional DMARDs, approximately 40% of patients do not achieve primary clinical outcomes in randomized trials, and only a small proportion achieve lasting remission. Over the past decade, studies in murine models point to the critical role of the lymphatic system in the pathogenesis and therapy of inflammatory-erosive arthritis, presumably by the removal of catabolic factors, cytokines and inflammatory cells from the inflamed synovium. Murine studies demonstrate that lymphatic drainage increases at the onset of inflammatory-erosive arthritis but, as inflammation progresses to a more chronic phase, lymphatic clearance declines and both structural and cellular changes are observed in the draining lymph node. Specifically, chronic damage to the lymphatic vessel from persistent inflammation results in loss of lymphatic vessel contraction followed by lymph node collapse, reduced lymphatic drainage, and ultimately severe synovitis and joint erosion. Notably, clinical pilot studies in patients with RA report lymph node changes following treatment, and thus draining lymphatic vessels and nodes could represent a potential biomarker of arthritis activity and response to therapy. Most importantly, targeting lymphatics represents an innovative strategy for therapeutic intervention for RA.


Asunto(s)
Artritis Reumatoide/terapia , Sistema Linfático/patología , Factor C de Crecimiento Endotelial Vascular/genética , Animales , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos/administración & dosificación , Humanos , Sistema Linfático/efectos de los fármacos , Ratones
6.
J Bone Miner Res ; 32(7): 1469-1480, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28256007

RESUMEN

Expression levels of Notch signaling molecules are increased in synovium from patients with rheumatoid arthritis (RA). However, it is not known which cell type(s) in RA synovium have Notch activation or if they play a pathogenetic role in RA. Here, we used Hes1-GFP/TNF-transgenic (TNF-Tg) mice to investigate the role of cells with active Notch signaling (GFP+) in RA. The number of GFP+ cells was significantly increased in synovium in Hes1-GFP/TNF-Tg mice and about 60% of them were F4/80+ macrophages expressing the inflammatory macrophage (M1) marker. TNF-Tg mice transplanted with Hes1-GFP/TNF-Tg bone marrow (BM) had significantly more GFP+ cells in their synovium than in BM. Intraarticular injection of Hes1-GFP/TNF-Tg or Hes1-GFP+ BM macrophages into WT and TNF-Tg mice showed the highest synovial GFP+ cells in the TNF-Tg mice that received Hes1-GFP/TNF-Tg cells. Thapsigargin (THAP), a Notch inhibitor, decreased TNF-induced M1 and increased M2 numbers and reduced joint lesion, synovial M1s, and GFP+ cells in Hes1-GFP/TNF-Tg mice. THAP did not affect M1s from mice carrying a constitutively active Notch1. Thus, the main cells with activated Notch signaling in the inflamed synovium of TNF-Tg mice are M1s derived from BM and targeting them may represent a new therapeutic approach for patients with inflammatory arthritis. © 2017 American Society for Bone and Mineral Research.


Asunto(s)
Artritis Experimental/metabolismo , Articulaciones/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Receptores Notch/metabolismo , Animales , Artritis Experimental/genética , Artritis Experimental/patología , Articulaciones/patología , Macrófagos/patología , Ratones , Ratones Transgénicos , Receptores Notch/genética
7.
Am J Physiol Cell Physiol ; 311(4): C673-C685, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27488671

RESUMEN

Calponin is an actin cytoskeleton-associated protein that regulates motility-based cellular functions. Three isoforms of calponin are present in vertebrates, among which calponin 2 encoded by the Cnn2 gene is expressed in multiple types of cells, including blood cells from the myeloid lineage. Our previous studies demonstrated that macrophages from Cnn2 knockout (KO) mice exhibit increased migration and phagocytosis. Intrigued by an observation that monocytes and macrophages from patients with rheumatoid arthritis had increased calponin 2, we investigated anti-glucose-6-phosphate isomerase serum-induced arthritis in Cnn2-KO mice for the effect of calponin 2 deletion on the pathogenesis and pathology of inflammatory arthritis. The results showed that the development of arthritis was attenuated in systemic Cnn2-KO mice with significantly reduced inflammation and bone erosion than that in age- and stain background-matched C57BL/6 wild-type mice. In vitro differentiation of calponin 2-null mouse bone marrow cells produced fewer osteoclasts with decreased bone resorption. The attenuation of inflammatory arthritis was confirmed in conditional myeloid cell-specific Cnn2-KO mice. The increased phagocytotic activity of calponin 2-null macrophages may facilitate the clearance of autoimmune complexes and the resolution of inflammation, whereas the decreased substrate adhesion may reduce osteoclastogenesis and bone resorption. The data suggest that calponin 2 regulation of cytoskeleton function plays a novel role in the pathogenesis of inflammatory arthritis, implicating a potentially therapeutic target.


Asunto(s)
Artritis/genética , Artritis/patología , Proteínas de Unión al Calcio/genética , Inflamación/genética , Inflamación/patología , Macrófagos/metabolismo , Proteínas de Microfilamentos/genética , Animales , Artritis/metabolismo , Resorción Ósea/genética , Resorción Ósea/metabolismo , Resorción Ósea/patología , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/patología , Eliminación de Gen , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Humanos , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Monocitos/metabolismo , Monocitos/patología , Células Mieloides/metabolismo , Células Mieloides/patología , Osteoclastos/metabolismo , Osteoclastos/patología , Fagocitosis/genética , Fagocitosis/fisiología , Calponinas
8.
J Ethnopharmacol ; 193: 293-302, 2016 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-27553977

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lymphatic system plays an important role in maintaining the fluid homeostasis and normal immune responses, anatomic or functional obstruction of which leads to lymphedema, and treatments for therapeutic lymphangiogenesis are efficiency for secondary lymphedema. Total saponins of panaxnotoginseng (PNS) are a mixture isolated from Panaxnotoginseng (Burkill) F.H.Chen, which has been used as traditional Chinese medicine in China for treatment of cardio- and cerebro-vascular diseases. The aim of this study was to determine the effect and mechanism of PNS on lymphangiogenesis. METHODS: The Tg (fli1: egfp; gata1: dsred) transgenic zebrafish embryos were treated with different concentrations of PNS (10, 50, 100µM) for 48h with or without the 6h pretreatment of the 30µM Vascular endothelial growth factors receptor (VEGFR)-3 kinase inhibitor, followed with morphological observation and lympangiogenesis of thoracic duct assessment. The effect of PNS on cell viability, migration, tube formation and Vascular endothelial growth factors (VEGF)-C mRNA and protein expression of lymphatic endothelial cells (LECs) were determined. The role of phosphatidylinositol-3 (PI-3)-kinase (PI3K), extracellular signal-regulated kinase (ERK)1/2 pathways, c-Jun N-terminal kinase (JNK) and P38 mitogen activated protein kinases (MAPK) signaling in PNS-induced VEGF-C expression of LECs by using pharmacological agents to block each signal. RESULTS: PNS promotes lymphangiogenesis of thoracic duct in zebrafish with or without VEGFR3 Kinase inhibitor pre-impairment. PNS promotes proliferation, migration and tube formation of LECs. The tube formation induced by PNS could be blocked by VEGFR3 Kinase inhibitor. PNS induce VEGF-C expression of LEC, which could be blocked by ERK1/2, PI3K and P38MAPK signaling inhibitors. CONCLUSION: PNS activates lymphangiogenesis both in vivo and in vitro by up-regulating VEGF-C expression and activation of ERK1/2, PI3K and P38MAPK signaling. These findings provide a novel insight into the role of PNS in lymphangiogenesis and suggest that it might be an attractive and suitable therapeutic agent for treating secondary lymphedema or other lymphatic system impairment related disease.


Asunto(s)
Células Endoteliales/metabolismo , Linfangiogénesis/efectos de los fármacos , Panax notoginseng/química , Saponinas/farmacología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Células Endoteliales/enzimología , Sistema de Señalización de MAP Quinasas , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Pez Cebra/embriología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-27239212

RESUMEN

To investigate whether Du-Huo-Ji-Sheng-Tang (DHJST) attenuate inflammation of RA related to lymphatic drainage function in vivo, we treated eight 3-month-old TNF-Tg mice with DHJST (12 g/kg) or the same volume of physiological saline once every day for 12 weeks, and 3-month-old WT littermates were used as negative control. After twelve weeks, we performed NIR-ICG imaging and found that DHJST increased the ICG clearance at the footpad and the pulse of efferent lymphatic vessel between popliteal lymph node and footpad. Histology staining at ankle joints showed that DHJST decreases synovial inflammation, bone erosion, cartilage erosion, and TRAP+ osteoclast area in TNF-Tg mice. Immunohistochemical staining by using anti-Lyve-1 and anti-podoplanin antibody showed that DHJST stimulated lymphangiogenesis in ankle joints of TNF-Tg mice. And zebrafish study suggested that DHJST promoted the formation of lymphatic thoracic duct. In conclusion, DHJST inhibits inflammation severity and promotes lymphangiogenesis and lymphatic drainage function of TNF-Tg mice.

10.
Chin J Integr Med ; 21(9): 648-55, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26432788

RESUMEN

Rheumatoid arthritis (RA) and osteoarthritis (OA) are the two most common joint diseases, and they have characterization of synovial inflammation and cartilage destruction, associated with the accumulation of numerous catabolic mediators and inflammatory cells in the synovial space and surrounding soft tissues. How these factors are cleared and if the "clearance" process contributes to pathogenesis of arthritis are not known. Recently, we found the existence of the peri-articular lymphatic system in mouse joints. The blockade of lymphangiogenesis and lymphatic draining function accelerates while stimulation of lymphatic function attenuates the severity of joint tissue lesions in mouse models of RA and OA. More importantly, we noticed the similarity between the dysfunction of lymphatic drainage in arthritic joints and "Bi" theory of Chinese medicine (CM), and demonstrated that several Bi disease-treated herbal drugs directly affect the function of lymphatic endothelial cells. Here we review the advances about the interactions between joint inflammation and changes in the peri-articular lymphatic system and discuss our view of linking "Bi" theory of CM to lymphatic dysfunction in arthritis.


Asunto(s)
Artritis/etiología , Artritis/terapia , Articulaciones/patología , Linfangiogénesis , Vasos Linfáticos/patología , Medicina Tradicional China , Animales , Modelos Animales de Enfermedad , Humanos
11.
Arthritis Rheum ; 65(1): 130-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23002006

RESUMEN

OBJECTIVE: B cell depletion therapy ameliorates rheumatoid arthritis by mechanisms that are incompletely understood. Arthritis flare in tumor necrosis factor (TNF)-transgenic mice is associated with efferent lymph node (LN) "collapse," triggered by B cell translocation into lymphatic spaces and decreased lymphatic drainage. The aim of this study was to examine whether the efficacy of B cell depletion therapy is associated with restoration of lymphatic drainage due to removal of obstructing nodal B cells. METHODS: We used contrast-enhanced magnetic resonance imaging, indocyanine green near-infrared imaging, and intravital immunofluorescence imaging to longitudinally assess synovitis, lymphatic flow, and cell migration in lymphatic vessels in TNF-transgenic mice. We conducted tests to determine whether the efficacy of B cell depletion therapy is associated with restoration of lymphatic draining and cell egress from arthritic joints. RESULTS: Unlike active lymphatics to normal and prearthritic knees, afferent lymphatic vessels to collapsed LNs in inflamed knees do not pulse. Intravital immunofluorescence imaging demonstrated that CD11b+ monocyte/macrophages in lymphatic vessels afferent to expanding LNs travel at high velocity (mean±SD 186±37 µm/second), while these cells are stationary in lymphatic vessels afferent to collapsed popliteal LNs. B cell depletion therapy for arthritis flares in TNF-transgenic mice significantly decreased knee synovium volume (by 50% from the baseline level) and significantly increased lymphatic clearance compared with placebo (P<0.05). This increased lymphatic drainage restored macrophage egress from inflamed joints without recovery of the lymphatic pulse. CONCLUSION: These results support a novel mechanism in which B cell depletion therapy for joint arthritis flares lessens inflammation by increasing lymphatic drainage and subsequent migration of cells and cytokines from the synovial space.


Asunto(s)
Artritis Reumatoide/terapia , Articulación de la Rodilla/patología , Vasos Linfáticos/patología , Depleción Linfocítica/métodos , Sinovitis/patología , Animales , Artritis Reumatoide/patología , Linfocitos B , Antígeno CD11b , Citometría de Flujo , Inmunohistoquímica , Ganglios Linfáticos , Imagen por Resonancia Magnética , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Resultado del Tratamiento
12.
Arthritis Rheum ; 63(8): 2318-28, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21538325

RESUMEN

OBJECTIVE: To investigate whether the enhancement of joint lymphangiogenesis by injection of vascular endothelial growth factor C (VEGF-C) adeno-associated virus (AAV) into the affected joints has therapeutic efficacy in chronic inflammatory arthritis in mice. METHODS: Tumor necrosis factor-transgenic (TNF-Tg) mice were used as a model of chronic inflammatory arthritis. Human VEGF-C was cloned into an AAV expression vector to generate AAV-VEGF-C. The joints of TNF-Tg mice were injected with AAV-VEGF-C or AAV-luciferase (AAV-Luc) as a control. During the 4 months following injection, magnetic resonance imaging of the joints and lymphatic imaging were performed to assess changes in synovial volume and lymph flow from the joint tissues to local draining lymph nodes. Joint inflammation, bone erosion, and cartilage loss were examined by histologic analyses. Lymphatic vessel formation was assessed using immunohistochemistry. RESULTS: Intraarticular administration of AAV-VEGF-C virus significantly attenuated the increase in synovial volume and increased lymphatic vessel number in the joint sections, as compared with that in control AAV-Luc-injected joints, during the 4-month period. This was accompanied by a reduction in the area of inflammation, bone erosion, cartilage loss, and osteoclast numbers. Lymph flow from the joints to local draining lymph nodes was slower in TNF-Tg mice than in wild-type littermates, and was significantly improved with AAV-VEGF-C treatment. CONCLUSION: Intraarticular injection of AAV-VEGF-C increased lymphangiogenesis and improved lymphatic drainage from the inflamed joints of mice, resulting in attenuation of joint tissue damage. Thus, improvement of joint lymphatic function by local administration of lymphatic growth factors represents a new therapeutic approach for chronic inflammatory arthritis.


Asunto(s)
Artritis/terapia , Articulaciones/patología , Factor C de Crecimiento Endotelial Vascular/uso terapéutico , Animales , Artritis/patología , Inflamación/metabolismo , Inflamación/patología , Inflamación/terapia , Articulaciones/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Ratones , Ratones Transgénicos , Factor C de Crecimiento Endotelial Vascular/metabolismo
13.
Ann N Y Acad Sci ; 1192: 84-94, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20392222

RESUMEN

The effects of antiresorptive agents (e.g., alendronate [Aln], osteoprotegerin [OPG]) on bone infection are unknown. Thus, their effects on implant-associated osteomyelitis (OM) were investigated in mice using PBS (placebo), gentamycin, and etanercept (TNFR:Fc) controls. None of the drugs affected humoral immunity, angiogenesis, or chronic infection. However, the significant (P < 0.05 vs. PBS) inhibition of cortical osteolysis and decreased draining lymph node size in Aln- and OPG-treated mice was associated with a significant (P < 0.05) increase in the incidence of high-grade infections during the establishment of OM. In contrast, the high-grade infections in TNFR:Fc-treated mice were associated with immunosuppression, as evidenced by the absence of granulomas and presence of Gram(+) biofilm in the bone marrow. Collectively, these findings indicate that although antiresorptive agents do not exacerbate chronic OM, they can increase the bacterial load during early infection by decreasing lymphatic drainage and preventing the removal of necrotic bone that harbors the bacteria.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Enfermedades Maxilomandibulares/inducido químicamente , Osteomielitis/inducido químicamente , Osteonecrosis/inducido químicamente , Animales , Biopelículas/efectos de los fármacos , Enfermedad Crónica , Citocinas/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Humanos , Inmunidad/efectos de los fármacos , Incidencia , Enfermedades Maxilomandibulares/epidemiología , Enfermedades Maxilomandibulares/inmunología , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoclastos/fisiología , Osteomielitis/complicaciones , Osteomielitis/epidemiología , Osteomielitis/inmunología , Osteonecrosis/epidemiología , Osteonecrosis/inmunología , Infecciones Estafilocócicas/inducido químicamente , Infecciones Estafilocócicas/complicaciones , Infecciones Estafilocócicas/epidemiología
14.
Ann N Y Acad Sci ; 1192: 367-75, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20392262

RESUMEN

Nuclear factor kappaB (NF-kappaB) is a set of multifunctional transcription factors that regulate expression of genes involved in numerous normal cellular activities. They also are activated in many inflammatory and neoplastic conditions in which their expression may be stimulated by proinflammatory cytokines. NF-kappaB, in turn, regulates the expression of cytokines and so can mediate autocrine self-amplifying cycles of cytokine release and NF-kappaB activation, leading to maintenance of inflammatory reactions beyond the initial stimulus, as seen in rheumatoid arthritis and asthma. Since discovery of the requirement of NF-kappaB for basal and cytokine-induced osteoclast formation in the mid-1990s, much has been learned about the role of NF-kappaB in bone. NF-kappaB has roles in skeletal development, endochondral ossification, osteoclast and osteoblast functions, and common bone diseases. NF-kappaB inhibitors have been developed, but none have made it to clinical trials for the treatment of common bone diseases. Here we review the roles for NF-kappaB in bone and in common bone diseases.


Asunto(s)
Huesos/metabolismo , FN-kappa B/fisiología , Animales , Artritis/genética , Artritis/metabolismo , Artritis/patología , Huesos/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Humanos , Modelos Biológicos , FN-kappa B/genética , FN-kappa B/metabolismo , Osteoblastos/metabolismo , Osteoblastos/fisiología , Osteoclastos/metabolismo , Osteoclastos/fisiología , Osteogénesis/genética , Osteogénesis/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
15.
Arthritis Rheum ; 60(9): 2666-76, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19714652

RESUMEN

OBJECTIVE: This study was undertaken to investigate the effect of lymphatic inhibition on joint and draining lymph node (LN) pathology during the course of arthritis progression in mice. METHODS: Tumor necrosis factor (TNF)-transgenic mice were used as a model of chronic inflammatory arthritis. Mice were subjected to contrast-enhanced magnetic resonance imaging to obtain ankle and knee joint synovial volumes and draining popliteal LN volumes before and after 8 weeks of treatment with vascular endothelial growth factor receptor 3 (VEGFR-3) neutralizing antibody, VEGFR-2 neutralizing antibody, or isotype IgG. Animals were subjected to near-infrared lymphatic imaging to determine the effect of VEGFR-3 neutralization on lymph transport from paws to draining popliteal LNs. Histologic, immunohistochemical, and reverse transcriptase-polymerase chain reaction analyses were used to examine lymphatic vessel formation and the morphology of joints and popliteal LNs. RESULTS: Compared with IgG treatment, VEGFR-3 neutralizing antibody treatment significantly decreased the size of popliteal LNs, the number of lymphatic vessels in joints and popliteal LNs, lymphatic drainage from paws to popliteal LNs, and the number of VEGF-C-expressing CD11b+ myeloid cells in popliteal LNs. However, it increased the synovial volume and area of inflammation in ankle and knee joints. VEGFR-2 neutralizing antibody, in contrast, inhibited both lymphangiogenesis and joint inflammation. CONCLUSION: These findings indicate that lymphangiogenesis and lymphatic drainage are reciprocally related to the severity of joint lesions during the development of chronic arthritis. Lymphatic drainage plays a beneficial role in controlling the progression of chronic inflammation.


Asunto(s)
Artritis/metabolismo , Inflamación/metabolismo , Ganglios Linfáticos/irrigación sanguínea , Ganglios Linfáticos/metabolismo , Neovascularización Fisiológica/fisiología , Índice de Severidad de la Enfermedad , Receptor 3 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Anticuerpos/farmacología , Artritis/patología , Artritis/fisiopatología , Antígeno CD11b/metabolismo , Enfermedad Crónica , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Inflamación/patología , Inflamación/fisiopatología , Ganglios Linfáticos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neovascularización Fisiológica/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA