Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1290888, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38323080

RESUMEN

Armeniacae semen amarum-seeds of Prunus armeniaca L. (Rosaceae) (ASA), also known as Kuxingren in Chinese, is a traditional Chinese herbal drug commonly used for lung disease and intestinal disorders. It has long been used to treat coughs and asthma, as well as to lubricate the colon and reduce constipation. ASA refers to the dried ripe seed of diverse species of Rosaceae and contains a variety of phytochemical components, including glycosides, organic acids, amino acids, flavonoids, terpenes, phytosterols, phenylpropanoids, and other components. Extensive data shows that ASA exhibits various pharmacological activities, such as anticancer activity, anti-oxidation, antimicrobial activity, anti-inflammation, protection of cardiovascular, neural, respiratory and digestive systems, antidiabetic effects, and protection of the liver and kidney, and other activities. In clinical practice, ASA can be used as a single drug or in combination with other traditional Chinese medicines, forming ASA-containing formulas, to treat various afflictions. However, it is important to consider the potential adverse reactions and pharmacokinetic properties of ASA during its clinical use. Overall, with various bioactive components, diversified pharmacological actions and potent efficacies, ASA is a promising drug that merits in-depth study on its functional mechanisms to facilitate its clinical application.

2.
J Sep Sci ; 47(1): e2300786, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38234027

RESUMEN

Epimedium (EM) and Psoraleae Fructus (PF) are a traditional herb combination often used as a fixed form to treat osteoporosis disease in the clinic. However, the intricate interactions of this pair remain unknown. In our study, we undertook a comprehensive examination of their compatibility behaviors. Concurrently, a precise and sensitive quantitation method was successfully developed and validated using liquid chromatography-tandem mass spectrometry for the determination of 12 components. This method was applied in analyzing herbal extracts and biological samples (both in the portal vein and systemic plasma), which was also used to study the pharmacokinetics of the herb pair. The results indicated that the combination of EM and PF enhanced the dissolution of chemical components from PF in extracts, but it had a negligible influence on the contents of the components from EM. On the contrary, the in vivo exposure of the lowly exposed EM flavonoids significantly increased following the combination of EM and PF, whereas the highly exposed psoralen and isopsoralen were greatly reduced. These interactions might be crucial for the synergy and toxicity reduction of the herbal pair in disease treatment, which pave the way for further exploration into the clinical application and pharmacological mechanisms of EM and PF.


Asunto(s)
Medicamentos Herbarios Chinos , Epimedium , Ratas , Animales , Medicamentos Herbarios Chinos/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Administración Oral
3.
Front Immunol ; 14: 1285550, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954597

RESUMEN

Acute lung injury (ALI) is a common condition, particularly in the COVID-19 pandemic, which is distinguished by sudden onset of respiratory insufficiency with tachypnea, oxygen-refractory cyanosis, reduced lung compliance and diffuse infiltration of pulmonary alveoli. It is well-established that increasing activity of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling axis and the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation are associated with the pathogenesis of ALI. Since ALI poses a huge challenge to human health, it is urgent to tackle this affliction with therapeutic intervention. Qinhuo Shanggan oral solution (QHSG), a traditional Chinese herbal formula, is clinically used for effective medication of various lung diseases including ALI, with the action mechanism obscure. In the present study, with the rat model of lipopolysaccharide (LPS)-induced ALI, QHSG was unveiled to ameliorate ALI by alleviating the pathological features, reversing the alteration in white blood cell profile and impeding the production of inflammatory cytokines through down-regulation of TLR4/NF-κB signaling cascade and inhibition of NLRP3 inflammasome activation. In LPS-stimulated RAW264.7 mouse macrophages, QHSG was discovered to hinder the generation of inflammatory cytokines by lessening TLR4/NF-κB signaling pathway activity and weakening NLRP3 inflammasome activation. Taken together, QHSG may resolve acute lung injury, attributed to its anti-inflammation and immunoregulation by attenuation of TLR4/NF-κB signaling cascade and inhibition of NLRP3 inflammasome activation. Our findings provide a novel insight into the action mechanism of QHSG and lay a mechanistic foundation for therapeutic intervention in acute lung injury with QHSG in clinical practice.


Asunto(s)
Lesión Pulmonar Aguda , FN-kappa B , Ratones , Ratas , Humanos , Animales , FN-kappa B/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Toll-Like 4/metabolismo , Lipopolisacáridos/farmacología , Pandemias , Ratones Endogámicos NOD , Transducción de Señal , Lesión Pulmonar Aguda/metabolismo , Citocinas/metabolismo
4.
Neurochem Res ; 48(8): 2463-2475, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37014492

RESUMEN

Insomnia and anxiety are two common and closely related clinical problems that pose a threat to individuals' physical and mental well-being. There is a possibility that some nuclei and neural circuits in the brain are shared by both insomnia and anxiety. In the present study, using a combination of chemogenetics, optogenetics, polysomnographic recordings and the classic tests of anxiety-like behaviors, we verified that the calmodulin-dependent protein kinase II alpha (CaMKIIa) neurons of the ventromedial hypothalamus (VMH) are involved in the regulation of both wakefulness and anxiety. Chemogenetic manipulation of the VMH CaMKIIa neurons elicited an apparent increase in wakefulness during activation, whereas inhibition decreased wakefulness mildly. It substantiated that the VMH CaMKIIa neurons contribute to wakefulness. Then in millisecond-scale control of neuronal activity, short-term and long-term optogenetic activation induced the initiation and maintenance of wakefulness, respectively. We also observed that mice reduced exploratory behaviors in classic anxiety tests while activating the VMH CaMKIIa neurons and were anxiolytic while inhibiting. Additionally, photostimulation of the VMH CaMKIIa axons in the paraventricular hypothalamus (PVH) mediated wakefulness and triggered anxiety-like behaviors as well. In conclusion, our results demonstrate that the VMH participates in the control of wakefulness and anxiety, and offer a neurological explanation for insomnia and anxiety, which may be valuable for therapeutic interventions such as medication and transcranial magnetic stimulation.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Vigilia , Ratones , Animales , Vigilia/fisiología , Hipotálamo , Neuronas/metabolismo , Ansiedad
5.
Phytomedicine ; 114: 154792, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37028248

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a malignant affliction that burdens people globally. Overactivated Hedgehog signal is highly implicated in CRC pathogenesis. Phytochemical berberine exerts strong potency on CRC, with molecular mechanism elusive. PURPOSE: We sought to study berberine's anti-CRC action and explore its underlying mechanism based on Hedgehog signaling cascade. METHODS: In CRC HCT116 cells and SW480 cells treated with berberine, the proliferation, migration, invasion, clonogenesis, apoptosis and cell cycle were measured, with determination of Hedgehog signaling pathway activity. Following establishment of mouse model of HCT116 xenograft tumor, the efficacies of berberine on carcinogenesis, pathological manifestation and malignant phenotypes of CRC were examined, with analysis of Hedgehog signaling axis in HCT116 xenograft tumor tissues. Additionally, toxicological study of berberine was conducted on zebrafish. RESULTS: Berberine was discovered to suppress the proliferation, migration, invasion and clonogenesis of HCT116 cells and SW480 cells. Furthermore, berberine caused cell apoptosis and blockaded cell cycle at phase G0/G1 in CRC cells, with dampened Hedgehog signaling cascade. In HCT116 xenograft tumor of nude mice, berberine inhibited tumor growth, alleviated pathological score, and promoted apoptosis and cell cycle arrest in tumor tissues, through constraining Hedgehog signaling. The toxicological study of berberine on zebrafish indicated that berberine incurred damage to the liver and heart of zebrafish at high dosage and prolonged administration. CONCLUSIONS: Taken together, berberine may inhibit the malignant phenotypes of CRC through diminishing Hedgehog signaling cascade. However, the potential adverse reactions should be taken into account upon abuse of berberine.


Asunto(s)
Berberina , Neoplasias Colorrectales , Ratones , Animales , Humanos , Proteínas Hedgehog , Berberina/farmacología , Pez Cebra , Ratones Desnudos , Neoplasias Colorrectales/tratamiento farmacológico , Proliferación Celular , Células HCT116 , Movimiento Celular , Línea Celular Tumoral , Apoptosis
6.
J Agric Food Chem ; 71(9): 3981-3993, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36826439

RESUMEN

Overwhelming evidence points to an abnormally active Wnt/ß-catenin signaling as a key player in colorectal cancer (CRC) pathogenesis. Ursolic acid (UA) is a pentacyclic triterpenoid that has been found in a broad variety of fruits, spices, and medicinal plants. UA has been shown to have potent bioactivity against a variety of cancers, including CRC, with the action mechanism obscure. Our study tried to learn more about the efficacy of UA on CRC and its functional mechanism amid the Wnt/ß-catenin signaling cascade. We determined the efficacy of UA on CRC SW620 cells with respect to the proliferation, migration, clonality, apoptosis, cell cycle, and Wnt/ß-catenin signaling cascade, with assessment of the effect of UA on normal colonic NCM460 cells. Also, the effects of UA on the tumor development, apoptosis, cell cycle, and Wnt/ß-catenin signaling axis were evaluated after a subcutaneous SW620 xenograft tumor model was established in mice. In this work, we showed that UA drastically suppressed proliferation, migration, and clonality; induced apoptosis; and arrested the cell cycle at the G0/G1 phase of SW620 cells, without the influence on NCM460 cells, accompanied by weakened activity of the Wnt/ß-catenin signaling pathway. Besides, UA markedly deterred the growth of the xenograft tumor, ameliorated pathological features, triggered apoptosis, and arrested the cell cycle in xenograft CRC tissue, by lessening the Wnt/ß-catenin signaling cascade. Overall, UA may inhibit the malignant phenotype, induce apoptosis, and arrest the cell cycle of CRC, potentially by attenuating the Wnt/ß-catenin signaling axis, providing insights into the mechanism for the potency of UA on CRC.


Asunto(s)
Neoplasias Colorrectales , Vía de Señalización Wnt , Humanos , Ratones , Animales , Regulación hacia Abajo , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ácido Ursólico
7.
Appl Bionics Biomech ; 2022: 5277660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060558

RESUMEN

At present, traditional methods of physical education in colleges and universities are no longer able to meet the requirements of modern physical education and need to be improved. The application of the visual teaching method to the teaching of physical education in college in the classroom can best see the modern theory of physical education, which is necessary for the theory of physical education in college. On this basis, it is recommended to use the teaching method with image in the teaching of physical education in college. This document is in the form of a search query in conjunction with other search methods to perform a search. This article takes Tai Chi in the university physical education curriculum as an example. It selects two classes with no difference in number of genders and conducts traditional teaching and VR image video teaching, respectively. And from the learning situation, interest and satisfaction of the two classes analyze the degree. In this study, we found that before the experiment, the number of students with 85 scores or above in the control class was 8, accounting for 20%, 14 students with 70-85 scores, accounting for 35%, and 18 students with 60-70 scores, accounting for 45%. As could be observed, the majority of students in the control class scored between 60 and 70 points overall, with a merit rate of only 55%. In the experimental class, there are 15 students with 85 points or above, accounting for 37.5%, 18 students with 70-85 points, accounting for 45%, and 7 students with 60-70 points, accounting for 17.5%. In the experimental class, the overall score of students is between 70 and 85 points, accounting for 82.5%. The image and video teaching method can be seen to be useful in improving students' athletic achievement. In addition, the image and image instruction approach can better enhance students' interest in learning, and most students are satisfied with the image and video instruction approach.

8.
Phytother Res ; 36(9): 3555-3570, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35708264

RESUMEN

It is being brought to light that smoothened (SMO)-independent non-canonical Hedgehog signaling is associated with the pathogenesis of various cancers. Ursolic acid (UA), a pentacyclic triterpenoid present in many medicinal herbs, manifests potent effectiveness against multiple malignancies including colorectal cancer (CRC). In our previous study, UA was found to protect against CRC in vitro by suppression of canonical Hedgehog signaling cascade. Here, the influence of UA on SMO-independent non-canonical Hedgehog signaling in CRC was investigated in the present study, which demonstrated that UA hampered the proliferation and migration, induced the apoptosis of HCT-116hSMO- cells with SMO gene knockdown, accompanied by the augmented expression of the suppressor of fused (SUFU), and lessened levels of MYC (c-Myc), glioma-associated oncogene (GLI1) and Sonic Hedgehog (SHH), and lowered phosphorylation of protein kinase B (PKB, AKT), suggesting that UA diminished non-canonical Hedgehog signal transduction in CRC. In HCT-116hSMO- xenograft tumor, UA ameliorated the symptoms, impeded the growth and caused the apoptosis of CRC, with heightened SUFU expression, and abated levels of MYC, GLI1, and SHH, and mitigated phosphorylation of AKT, indicating that UA down-regulated non-canonical Hedgehog signaling cascade in CRC. Taken together, UA may alleviate CRC by suppressing AKT signaling-dependent activation of SMO-independent non-canonical Hedgehog pathway.


Asunto(s)
Neoplasias Colorrectales , Triterpenos , Animales , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas Hedgehog/metabolismo , Humanos , Ácido Oleanólico/análogos & derivados , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Triterpenos/farmacología , Proteína con Dedos de Zinc GLI1/genética , Ácido Ursólico
9.
Phytomedicine ; 103: 154227, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35679795

RESUMEN

BACKGROUND: A growing body of evidence reveals that dysregulation of Hedgehog signaling pathway and dysbiosis of gut microbiota are associated with the pathogenesis of colorectal cancer (CRC). Berberine, a botanical benzylisoquinoline alkaloid, possesses powerful activities against various malignancies including CRC, with the underlying mechanisms to be illuminated. PURPOSE: The present study investigated the potencies of berberine on CRC and deciphered the action mechanisms in the context of Hedgehog signaling cascade and gut microbiota. METHODS: The effects of berberine on the malignant phenotype, apoptosis, cell cycle and Hedgehog signaling of CRC cells were examined in vitro. In azoxymethane/dextran sulfate sodium-caused mouse CRC, the efficacies of berberine on the carcinogenesis, pathological profile, apoptosis, cell cycle and Hedgehog signaling were determined in vivo. Also, the influences of berberine on gut microbiota in CRC mice were assessed by high-throughput DNA sequencing analysis of 16S ribosomal RNA of fecal microbiome in CRC mice. RESULTS: In the present study, berberine was found to dampen the proliferation, migration, invasion and colony formation of CRC cells, without toxicity to normal colonic cells. Additionally, berberine induced apoptosis and arrested cell cycle at G0/G1 phase in CRC cells, accompanied by reduced Hedgehog signaling pathway activity in vitro. In mouse CRC, berberine suppressed tumor growth, ameliorated pathological manifestations, and potentially induced the apoptosis and cell cycle arrest of CRC, with lowered Hedgehog signaling cascade in vivo. Additionally, berberine decreased ß-diversity of gut microbiota in CRC mice, without influence on α-diversity. Berberine also enriched probiotic microbes and depleted pathogenic microbes, and modulated the functionality of gut microbiota in CRC mice. CONCLUSIONS: Overall, berberine may suppress colorectal cancer, orchestrated by down-regulation of Hedgehog signaling pathway activity and modulation of gut microbiota.


Asunto(s)
Berberina , Neoplasias Colorrectales , Microbioma Gastrointestinal , Animales , Azoximetano , Berberina/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Proteínas Hedgehog/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos
10.
Phytomedicine ; 98: 153972, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35151214

RESUMEN

BACKGROUND: Colitis-associated colorectal cancer (CAC) is a specific type of colorectal cancer (CRC) and mainly develops from long-term intestinal inflammation. Mounting evidence reveals that activated Hedgehog signaling pathway plays a vital role in the pathogenesis of CRC. Scutellarin is a type of phytochemical flavonoid with a powerful efficacy on various malignancies, including CRC. AIM: Here, we studied the therapeutic effect of scutellarin on CRC and its direct regulating targets. METHODS: The CAC model in mice was established by azomethane oxide (AOM) and sodium dextran sulfate (DSS), followed by detection of the efficacies of scutellarin on the carcinogenesis, apoptosis, inflammation, Hedgehog signaling cascade and complicated inflammatory networks in CAC tissues of mice. In CRC SW480 cells, the effects of scutellarin on malignant phenotype, apoptosis and Hedgehog signaling were examined. In TNF-α-stimulated IEC-6 intestinal epithelial cells, the actions of scutellarin on inflammatory response and Hedgehog signals were assessed as well. RESULTS: Scutellarin significantly ameliorated AOM/DSS-caused CAC in mice and induced apoptosis in CAC tissues of mice, by inhibiting NF-κB (nuclear factor kappa B) -mediated inflammation and Hedgehog signaling axis. RNA-seq and transcriptome analysis indicated that scutellarin regulated complicated inflammatory networks in mouse CAC. Also, scutellarin suppressed the proliferation, migration, colony formation, and induced apoptosis of SW480 cells by down-regulation of Hedgehog signaling pathway activity. Additionally, scutellarin lessened NF-κB-mediated inflammatory response in TNF-α-stimulated IEC-6 cells, by attenuating Hedgehog signaling cascade. CONCLUSION: Scutellarin potently ameliorates CAC by suppressing Hedgehog signaling pathway activity, underpinning the promising application of scutellarin to CRC in clinical settings.

11.
Phytomedicine ; 94: 153805, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34749177

RESUMEN

BACKGROUND: Shikonin is one of the major phytochemical components of Lithospermum erythrorhizon (Purple Cromwell), which is a type of medicinal herb broadly utilized in traditional Chinese medicine. It is well established that shikonin possesses remarkable therapeutic actions on various diseases, with the underlying mechanisms, pharmacokinetics and toxicological effects elusive. Also, the clinical trial and pharmaceutical study of shikonin remain to be comprehensively delineated. PURPOSE: The present review aimed to systematically summarize the updated knowledge regarding the therapeutic actions, pharmacokinetics, toxicological effects, clinical trial and pharmaceutical study of shikonin. METHODS: The information contained in this review article were retrieved from some authoritative databases including Web of Science, PubMed, Google scholar, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database and so on, till August 2021. RESULTS: Shikonin exerts multiple therapeutic efficacies, such as anti-inflammation, anti-cancer, cardiovascular protection, anti-microbiomes, analgesia, anti-obesity, brain protection, and so on, mainly by regulating the NF-κB, PI3K/Akt/MAPKs, Akt/mTOR, TGF-ß, GSK3ß, TLR4/Akt signaling pathways, NLRP3 inflammasome, reactive oxygen stress, Bax/Bcl-2, etc. In terms of pharmacokinetics, shikonin has an unfavorable oral bioavailability, 64.6% of the binding rate of plasma protein, and enhances some metabolic enzymes, particularly including cytochrome P450. In regard to the toxicological effects, shikonin may potentially cause nephrotoxicity and skin allergy. The above pharmacodynamics and pharmacokinetics of shikonin have been validated by few clinical trials. In addition, pharmaceutical innovation of shikonin with novel drug delivery system such as nanoparticles, liposomes, microemulsions, nanogel, cyclodextrin complexes, micelles and polymers are beneficial to the development of shikonin-based drugs. CONCLUSIONS: Shikonin is a promising phytochemical for drug candidates. Extensive and intensive explorations on shikonin are warranted to expedite the utilization of shikonin-based drugs in the clinical setting.


Asunto(s)
Naftoquinonas , Preparaciones Farmacéuticas , FN-kappa B , Naftoquinonas/farmacología , Fosfatidilinositol 3-Quinasas
12.
Curr Opin Pharmacol ; 60: 200-207, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34461565

RESUMEN

Lonicerae japonicae flos (LJF), known as Jin Yin Hua in Chinese, is one of the most commonly used traditional Chinese herbs and nutraceuticals. Nowadays, LJF is broadly applied in an array of afflictions, such as fever, sore throat, flu infection, cough, and arthritis, with the action mechanism to be elucidated. Here, we strove to summarize the main phytochemical components of LJF and review its updated pharmacological effects, including inhibition of inflammation, pyrexia, viruses, and bacteria, immunoregulation, and protection of the liver, nervous system, and heart, with a focus on the potential efficacy of LJF on coronavirus disease-2019 based on network pharmacology so as to fully underpin the utilization of LJF as a medicinal herb and a favorable nutraceutical in daily life.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/farmacología , Extractos Vegetales/farmacología , Humanos , Lonicera , Fitoquímicos/farmacología , SARS-CoV-2/efectos de los fármacos
13.
Front Pharmacol ; 12: 685002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276374

RESUMEN

As an important part of complementary and alternative medicine, traditional Chinese medicine (TCM) has been applied to treat a host of diseases for centuries. Over the years, with the incidence rate of human colorectal cancer (CRC) increasing continuously and the advantage of TCM gradually becoming more prominent, the importance of TCM in both domestic and international fields is also growing with each passing day. However, the unknowability of active ingredients, effective substances, and the underlying mechanisms of TCM against this malignant tumor greatly restricts the translation degree of clinical products and the pace of precision medicine. In this review, based on the characteristics of TCM and the oral administration of most ingredients, we herein provide beneficial information for the clinical utilization of TCM in the prevention and treatment of CRC and retrospect the current preclinical studies on the related active ingredients, as well as put forward the research mode for the discovery of active ingredients and effective substances in TCM, to provide novel insights into the research and development of innovative agents from this conventional medicine for CRC treatment and assist the realization of precision medicine.

14.
Am J Chin Med ; 49(4): 805-828, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33827382

RESUMEN

Based on the study and research on the pathogenesis of colorectal cancer, the types and functions of gut microbiota, and its role in guiding and regulating the occurrence and development of diseases, we have explored the mechanism of traditional Chinese medicine in the treatment of colorectal cancer by regulating the gut microbiota. Genetic variation, abnormal responses of innate and adaptive immunity, mucosal barrier dysfunction, imbalance of intestinal microbial colonization, personal and environmental risk factors are the main pathogenesis of colorectal cancer. The gut microbiota mainly includes Sclerotium (including Clostridium, Enterococcus, Lactobacillus and Ruminococcus) and Bacteroides (including Bacteroides and Prevotella), which have biological antagonism, nutrition for the organism, metabolic abilities, immune stimulation, and ability to shape cancer genes functions to body. The gut microbiota can be related to the health of the host. Current studies have shown that Chinese herbal compound, single medicinal materials, and monomer components can treat colorectal cancer by regulating the gut microbiota, such as Xiaoyaosan can increase the abundance of Bacteroides, Lactobacillus, and Proteus and decrease the abundance of Desulfovibrio and Rickerella. Therefore, studying the regulation and mechanism of gut microbiota on colorectal cancer is of great benefit to disease treatment.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Medicina Tradicional China/métodos , Humanos , Factores de Riesgo
15.
Zhongguo Zhong Yao Za Zhi ; 46(5): 1217-1223, 2021 Mar.
Artículo en Chino | MEDLINE | ID: mdl-33787118

RESUMEN

To prove that ursolic acid(UA)could activate the autophagy of colorectal cancer HCT116 cells by inhibiting hedgehog signaling pathway. The effect of UA on the viability of HCT116 cells was determined by MTT assay. The effect of UA on the proliferation and migration of HCT116 cells was detected by crystal violet staining and scratch test. In the study on autophagy, the time points were screened out first: the autophagy fluorescence intensity of UA acting on HCT116 at different time points were detected by Cell Meter~(TM) Autophagy Assay Kit; Western blot was used to detect the expression of autophagy protein P62 at different time points. Then, Cell Meter~(TM) Autophagy Assay Kit was used to detect the effect of UA on autophagy fluorescence intensity of HCT116 cells. The effect of different doses of UA on the expressions of LC3Ⅱ and P62 proteins in HCT116 cells were detected by Western blot. Further, AdPlus-mCherry-GFP-LC3 B adenovirus transfection was used to detect the effects of UA on autophagy flux of HCT116 cells; UA combined with autophagy inhibitor chloroquine(CQ) was used to detect the expression of LC3Ⅱ by Western blot. In terms of mechanism, the effect of UA on hedgehog signaling pathway-related proteins in HCT116 cells was detected by Western blot. The results showed that UA inhibited the activity, proliferation and migration of HCT116 cells. UA enhanced the fluorescence intensity of autophagy in HCT116 cells, while promoting the expression of LC3Ⅱ and inhibiting the expression of P62, in a time and dose dependent manner. UA activated the autophagy in HCT116 cells, which manifested that UA resulted in the accumulation of fluorescence spots and strengthened the fluorescence intensity of autophagosomes; compared with UA alone, UA combined with autophagy inhibitor CQ promoted the expression of LC3Ⅱ. UA reduced the expressions of PTCH1, GLI1, SMO, SHH and c-Myc in hedgehog signaling pathway, while increased the expression of Sufu. In conclusion, our study showed that UA activated autophagy in colorectal cancer HCT116 cells, which was related to the mechanism in inhibiting hedgehog signaling pathway activity.


Asunto(s)
Neoplasias Colorrectales , Proteínas Hedgehog , Apoptosis , Autofagia , Línea Celular Tumoral , Proteínas Hedgehog/genética , Humanos , Transducción de Señal , Triterpenos , Ácido Ursólico
16.
Brain Behav ; 11(1): e01903, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33128305

RESUMEN

BACKGROUND AND PURPOSE: Dopamine is well-known to contribute to emergence from anesthesia. Previous studies have demonstrated that the paraventricular thalamus (PVT) in the midline nuclei is crucial for wakefulness. Moreover, the PVT receives dopaminergic projections from the brainstem. Therefore, we hypothesize that the dopaminergic signaling in the PVT plays a role in emergence from isoflurane anesthesia. METHODS: We used c-Fos immunohistochemistry to reveal the activity of PVT neurons in three groups: The first group (iso+ EM- ) underwent the anesthesia protocol and was sacrificed before emergence. The second group (iso+ EM+ ) underwent passive emergence from the same anesthesia protocol. The last group (oxy+ ) received oxygen. D2-like agonist quinpirole (2 or 4 mM) or D2-like antagonist raclopride (2 or 5 mM) was microinjected into the PVT, and their effects on emergence and induction time were analyzed. Surface cortical electroencephalogram (EEG) recordings were used to explore the effects of quinpirole injection into the PVT on cortical excitability during isoflurane anesthesia. The activity of PVT neurons after quinpirole injection was assessed by c-Fos immunohistochemistry. RESULTS: The number of c-Fos-positive nuclei for the iso+ EM+ group was significantly higher than the oxy+ and iso+ EM- groups. Application of quinpirole (4 mM) into the PVT shortened emergence time compared with the saline group (p < .01). In contrast, administration of raclopride (2 mM) delayed emergence time (p < .05). Neither quinpirole nor raclopride exerted an effect on induction time. EEG analyses showed that quinpirole (4 mM) decreased the burst suppression ratio during isoflurane anesthesia (p < .01). The number of c-Fos-positive nuclei for the quinpirole (4 mM) group was significantly higher than saline group (p < .01). CONCLUSIONS: Our findings suggest that the activity of PVT neurons is enhanced after emergence from anesthesia, and the dopaminergic signaling in the PVT may facilitate emergence from isoflurane anesthesia.


Asunto(s)
Anestesia , Isoflurano , Animales , Agonistas de Dopamina/farmacología , Isoflurano/farmacología , Ratones , Quinpirol/farmacología , Tálamo
17.
Fitoterapia ; 147: 104735, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33010369

RESUMEN

Ursolic acid (UA) is a natural pentacyclic triterpenoid compound existing in various traditional Chinese medicinal herbs, and it possesses diverse pharmacological actions and some undesirable adverse effects, even toxicological activities. Due to UA's low solubility and poor bioavailability, and its interaction with gut microbiota after oral administration, the pharmacokinetics of UA remain elusive, leading to obscurity in the pharmacokinetics-pharmacodynamics (PK-PD) profile and relationship for UA. Based on literatures from PubMed, Google Scholar, ResearchGate, Web of Science and Wiley Online Library, with keywords of "pharmacology", "toxicology", "pharmacokinetics", "PK-PD" and "ursolic acid", herein we systematically review the pharmacology and toxicity of UA, and rethink on its pharmacokinetics on the basis of PK-PD model, and seek to delineate the underlying mechanisms for the characteristics of pharmacology and toxicology of UA, and for the pharmacokinetic features of UA particularly from the organ tropism and the interactions between UA and gut microbiota, and lay a solid foundation for development of UA-derived therapeutic agents in clinical settings.


Asunto(s)
Triterpenos/farmacología , Triterpenos/farmacocinética , Triterpenos/toxicidad , Animales , Antiinfecciosos , Antiinflamatorios , Antineoplásicos , Antivirales , Disponibilidad Biológica , Fármacos Cardiovasculares , Humanos , Solubilidad , Ácido Ursólico
18.
Zhongguo Zhong Yao Za Zhi ; 45(7): 1676-1683, 2020 Apr.
Artículo en Chino | MEDLINE | ID: mdl-32489049

RESUMEN

The objective of this study was to investigate the inhibitory effect of scutellarin on the differentiation of colonic cancer stem cells in vitro and in vivo and to explore its underlying hedgehog signaling-based mechanism. The effect of scutellarin on the growth in vitro of HT-29 cells-derived cancer stem-like cells(HT-29 CSC) was observed with 3 D cell culture. The effect of scutellarin on the transformation of HT-29 CSC cells was assessed by soft agar colony formation assay. Fetal calf serum was used to induce differentiation of stem cells and observe the effect of scutellarin on HT-29 CSC cells differentiation in vitro. The effects of scutellarin on mRNA expressions of Lgr5, c-Myc, CK20 and Nanog in HT-29 CSC cells were determined by quantitative Real-time polymerase chain reaction(qRT-PCR). The effects of scutellarin on protein expressions of c-Myc, Gli1 and Lgr5 in HT-29 CSC cells were examined by Western blot. After subcutaneous implantation of HT-29 CSC cells in nude mice, the effect of scutellarin on the mouse body weight and the growth of HT-29 CSC-derived tumor were explored. qRT-PCR was used for evaluating the effect of scutellarin on mRNA levels of CD133, Lgr5, Gli1, Ptch1, c-Myc, Ki-67, CK20 and Nanog in tumor. Western blot and immunohistochemistry analysis were used to detect the effect of scutellarin on protein expressions of c-Myc, Gli1, Lgr5, CD133 and Ki-67 in tumor. The in vitro experiments showed that scutellarin inhibited the growth, transformation and differentiation of HT-29 CSC cells, significantly down-regulated the mRNA levels of Lgr5, c-Myc, CK20 and Nanog in HT-29 CSC cells as well as the protein expression levels of c-Myc, Gli1 and Lgr5 in HT-29 CSC cells. Additionally, animal experiments showed that scutellarin significantly inhibited the growth of subcutaneous xenografts in nude mice, and down-regulated the mRNA expressions of CD133, Lgr5, Gli1, Ptch1, c-Myc, Ki-67, CK20 and Nanog as well as the protein levels of c-Myc, Gli1, Lgr5, CD133 and Ki-67 of xenografts in nude mice. Taken together, scutellarin could inhibit the differentiation of colo-nic cancer stem cells in vitro and in vivo, potentially by down regulation of hedgehog signaling pathway activity.


Asunto(s)
Células Madre Neoplásicas , Animales , Apigenina , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Glucuronatos , Proteínas Hedgehog , Humanos , Ratones , Ratones Desnudos
19.
Int J Nanomedicine ; 15: 1373-1385, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32184592

RESUMEN

BACKGROUND: Photothermal therapy (PTT) has great potential application in the treatment of tumors. However, due to the low penetration of near-infrared light (NIR) and the low concentration of nanomaterials in the tumor site, the application of PTT has been limited. PURPOSE: The objective of this study was to investigate the therapeutic effect of transcatheter intra-arterial infusion of lecithin-modified Bi nanoparticles (Bi-Ln NPs) combined with interventional PTT (IPTT) on hepatocellular carcinoma. METHODS: Bi-Ln NPs were prepared by emulsifying the hydrophobic Bi nanoparticles and lecithin, and the photothermal conversion and cytotoxicity of Bi-Ln NPs were then measured by infrared imaging and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, respectively. Twenty-four VX2 hepatic carcinoma rabbits were randomly divided into four groups. Rabbits in group A received Bi-Ln NPs by intra-arterial infusion and NIR laser treatment (IA Bi-Ln NPs + Laser), group B received Bi-Ln NPs by intravenous infusion and NIR laser treatment (IV Bi-Ln NPs + Laser), group C received PBS (phosphate buffer saline) via intra-arterial infusion with NIR laser treatment (IA PBS + Laser), group D received PBS via intra-arterial infusion (IA PBS). Transcatheter intra-arterial infusion was conducted by superselective intubation under digital subtraction angiography (DSA) guidance. IPTT was performed by introducing an NIR optical fiber access to the rabbit VX2 hepatic carcinoma under real-time ultrasound guidance. Magnetic resonance imaging (MRI) was performed to evaluate the tumor size. Hematoxylin and eosin (H&E) stain and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) were conducted 7 days after treatment to evaluate the necrosis rate and viability of tumor, respectively. RESULTS: The Bi-Ln NPs have the advantages of good biological compatibility and high photothermal conversion efficiency. Minimally invasive transcatheter intra-arterial infusion can markedly increase the concentration of Bi-Ln NPs in tumor tissues. IPTT can contribute to the significant improvement in the photothermal efficiency of Bi-Ln NPs. Compared to other groups, the group of IA Bi-Ln NPs + Laser showed a significantly higher tumor inhibition rate (TIR) of 93.38 ± 19.57%, a higher tumor necrosis rate of 83.12 ± 8.02%, and a higher apoptosis rate of (43.26 ± 10.65%) after treatment. CONCLUSION: Transcatheter intra-arterial infusion combined with interventional PTT (IPTT) is safe and effective in eradicating tumor cells and inhibiting tumor growth and may provide a novel and valuable choice for the treatment of hepatocellular carcinoma in the future.


Asunto(s)
Bismuto/química , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas Experimentales/terapia , Nanopartículas del Metal/administración & dosificación , Fototerapia , Ultrasonografía/métodos , Animales , Apoptosis , Carcinoma Hepatocelular/patología , Terapia Combinada , Femenino , Arteria Hepática , Rayos Infrarrojos , Infusiones Intraarteriales , Lecitinas/química , Neoplasias Hepáticas Experimentales/patología , Masculino , Nanopartículas del Metal/química , Necrosis , Conejos
20.
Mil Med Res ; 7(1): 4, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029004

RESUMEN

In December 2019, a new type viral pneumonia cases occurred in Wuhan, Hubei Province; and then named "2019 novel coronavirus (2019-nCoV)" by the World Health Organization (WHO) on 12 January 2020. For it is a never been experienced respiratory disease before and with infection ability widely and quickly, it attracted the world's attention but without treatment and control manual. For the request from frontline clinicians and public health professionals of 2019-nCoV infected pneumonia management, an evidence-based guideline urgently needs to be developed. Therefore, we drafted this guideline according to the rapid advice guidelines methodology and general rules of WHO guideline development; we also added the first-hand management data of Zhongnan Hospital of Wuhan University. This guideline includes the guideline methodology, epidemiological characteristics, disease screening and population prevention, diagnosis, treatment and control (including traditional Chinese Medicine), nosocomial infection prevention and control, and disease nursing of the 2019-nCoV. Moreover, we also provide a whole process of a successful treatment case of the severe 2019-nCoV infected pneumonia and experience and lessons of hospital rescue for 2019-nCoV infections. This rapid advice guideline is suitable for the first frontline doctors and nurses, managers of hospitals and healthcare sections, community residents, public health persons, relevant researchers, and all person who are interested in the 2019-nCoV.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Infección Hospitalaria , Control de Infecciones , Tamizaje Masivo , Equipo de Protección Personal , Neumonía Viral , Antibacterianos/uso terapéutico , Antivirales/uso terapéutico , Betacoronavirus/aislamiento & purificación , Betacoronavirus/patogenicidad , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/terapia , Infecciones por Coronavirus/transmisión , Infección Hospitalaria/prevención & control , Diagnóstico Diferencial , Medicamentos Herbarios Chinos , Medicina Basada en la Evidencia , Fluidoterapia , Humanos , Control de Infecciones/normas , Pulmón/diagnóstico por imagen , Epidemiología Molecular , Atención de Enfermería , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Neumonía Viral/etiología , Neumonía Viral/terapia , Neumonía Viral/transmisión , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA