RESUMEN
The 4-coumarate: CoA ligase(4CL) is a key enzyme in the upstream pathway of phenylpropanoids such as flavonoids, soluble phenolic esters, lignans, and lignins in plants. In this study, 13 4CL family members of Arabidopsis thaliana were used as reference sequences to identify the 4CL gene family candidate members of Isatis indigotica from the reported I. indigotica genome. Further bioinformatics analysis and analysis of the expression pattern of 4CL genes and the accumulation pattern of flavonoids were carried out. Thirteen 4CL genes were obtained, named Ii4CL1-Ii4CL13, which were distributed on chromosomes 1, 2, 3, 4, and 6. The analysis of the gene structure and conserved structural domains revealed the intron number of I. indigotica 4CL genes was between 1 and 12 and the protein structural domains were highly conserved. Cis-acting element analysis showed that there were multiple response elements in the promoter sequence of I. indigotica 4CL gene family, and jasmonic acid had the largest number of reaction elements. The collinearity analysis showed that there was a close relationship between the 4CL gene family members of I. indigotica and A. thaliana. As revealed by qPCR results, the expression analysis of the 4CL gene family showed that 10 4CL genes had higher expression levels in the aboveground part of I. indigotica. The content assay of flavonoids in different parts of I. indigotica showed that flavonoids were mainly accumulated in the aboveground part of plants. This study provides a basis for further investigating the roles of the 4CL gene family involved in the biosynthesis of flavonoids in I. indigotica.
Asunto(s)
Isatis , Ligasas , Ligasas/genética , Isatis/genética , Regiones Promotoras Genéticas , Plantas/metabolismo , Flavonoides , Coenzima A Ligasas/genética , Coenzima A Ligasas/química , Coenzima A Ligasas/metabolismoRESUMEN
Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.
Asunto(s)
Cadherinas , Traumatismos de las Arterias Carótidas , Diterpenos , Lesiones del Sistema Vascular , Ratones , Ratas , Animales , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Remodelación Vascular , Proliferación Celular , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Traumatismos de las Arterias Carótidas/patología , Simulación del Acoplamiento Molecular , Músculo Liso Vascular , Movimiento Celular , Ratones Endogámicos C57BL , Transducción de Señal , Succinatos/metabolismo , Succinatos/farmacología , Potasio/metabolismo , Potasio/farmacología , Células CultivadasRESUMEN
CONTEXT: Liuwei Dihuang pill (LWDH) has been used to treat postmenopausal osteoporosis (PMOP). OBJECTIVE: To explore the effects and mechanisms of action of LWDH in PMOP. MATERIALS AND METHODS: Forty-eight female Sprague-Dawley rats were divided into four groups: sham-operated (SHAM), ovariectomized (OVX), LWDH high dose (LWDH-H, 1.6 g/kg/d) and LWDH low dose (LWDH-L, 0.8 g/kg/d); the doses were administered after ovariectomy via gavage for eight weeks. After eight weeks, the bone microarchitecture was evaluated. The effect of LWDH on the differentiation of bone marrow mesenchymal stem cells (BMSCs) was assessed via osteogenesis- and lipogenesis-induced BMSC differentiation. The senescence-related biological indices were also detected using senescence staining, cell cycle analysis, quantitative real-time polymerase chain reaction and western blotting. Finally, the expression levels of autophagy-related proteins and Yes-associated protein (YAP) were evaluated. RESULTS: LWDH-L and LWDH-H significantly modified OVX-induced bone loss. LWDH promoted osteogenesis and inhibited adipogenesis in OVX-BMSCs. Additionally, LWDH decreased the positive ratio of senescence OVX-BMSCs and improved cell viability, cell cycle, and the mRNA and protein levels of p53 and p21. LWDH upregulated the expression of autophagy-related proteins, LC3, Beclin1 and YAP, in OVX-BMSCs and downregulated the expression of p62. DISCUSSION AND CONCLUSIONS: LWDH improves osteoporosis by delaying the BMSC senescence through the YAP-autophagy axis.
Asunto(s)
Células Madre Mesenquimatosas , Proteínas Señalizadoras YAP , Animales , Femenino , Humanos , Ratas , Autofagia , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/farmacología , Diferenciación Celular , Osteogénesis , Ovariectomía , Ratas Sprague-DawleyRESUMEN
OBJECTIVES: To construct a clinical prediction model for the impact of acupuncture on pregnancy outcomes in poor ovarian response (POR) patients, providing insights and methods for predicting pregnancy outcomes in POR patients undergoing acupuncture treatment. METHODS: Clinical data of 268 POR patients (2 cases were eliminated) primarily treated with "thirteen needle acupuncture for Tiaojing Cuyun (regulating menstruation and promoting pregnancy)" was collected from the international patient registry platform of acupuncture moxibustion (IPRPAM) from September 19, 2017 to April 30, 2023, involving 24 clinical centers including Acupuncture-Moxibustion Hospital of China Academy of Chinese Medical Sciences. LASSO and univariate Cox regression were used to screen factors influencing pregnancy outcomes, and a multivariate Cox regression model was established based on the screening results. The best model was selected using the Akaike information criterion (AIC), and a nomogram for clinical pregnancy prediction was constructed. The prediction model was evaluated using receiver operating characteristic (ROC) curves and calibration curves, and internal validation was performed using the Bootstrap method. RESULTS: (1) Age, level of anti-Müllerian hormone (AMH), and total treatment numbers of acupuncture were independent predictors of pregnancy outcomes in POR patients receiving acupuncture (P<0.05). (2) The AIC value of the best subset-Cox multivariate model (560.6) was the smallest, indicating it as the optimal model. (3) The areas under curve (AUCs) of the clinical prediction model after 6, 12, 24, and 36 months treatment were 0.627, 0.719, 0.770, and 0.766, respectively, and in the validation group, they were 0.620, 0.704, 0.759, and 0.765, indicating good discrimination and repeatability of the prediction model. (4) The calibration curve showed that the prediction curve of the clinical prediction model was close to the ideal model's prediction curve, indicating good calibration of the prediction model. CONCLUSIONS: The clinical prediction model for the impact of acupuncture on pregnancy outcomes in POR patients based on the IPRPAM platform has good clinical application value and provides insights into predicting pregnancy outcomes in POR patients undergoing acupuncture treatment.
Asunto(s)
Terapia por Acupuntura , Resultado del Embarazo , Embarazo , Femenino , Humanos , Modelos Estadísticos , Pronóstico , Sistema de RegistrosRESUMEN
This study investigated the effect of Xiaoxuming Decoction(XXMD) on the activation of astrocytes after cerebral ischemia/reperfusion(I/R) injury. The model of cerebral IR injury was established using the middle cerebral artery occlusion method. Fluorocitrate(FC), an inhibitor of astrocyte activation, was applied to inhibit astrocyte activation. Rats were randomly divided into a sham group, a model group, a XXMD group, a XXMD+FC group, and a XXMD+Vehicle group. Neurobehavioral changes at 24 hours after cerebral IR injury, cerebral infarction, histopathological changes observed through HE staining, submicroscopic structure of astrocytes observed through transmission electron microscopy, fluorescence intensity of glial fibrillary acidic protein(GFAP) and thrombospondin 1(TSP1) measured through immunofluorescence, and expression of GFAP and TSP1 in brain tissue measured through Western blot were evaluated in rats from each group. The experimental results showed that neurobehavioral scores and cerebral infarct area significantly increased in the model group. The XXMD group, the XXMD+FC group, and the XXMD+Vehicle group all alleviated neurobehavioral changes in rats. The pathological changes in the brain were evident in the model group, while the XXMD group, the XXMD+FC group, and the XXMD+Vehicle group exhibited milder cerebral IR injury in rats. The submicroscopic structure of astrocytes in the model group showed significant swelling, whereas the XXMD group, the XXMD+FC group, and XXMD+Vehicle group protected the submicroscopic structure of astrocytes. The fluorescence intensity and protein expression of GFAP and TSP1 increased in the model group compared with those in the sham group. However, the XXMD group, the XXMD+FC group, and XXMD+Vehicle group all down-regulated the expression of GFAP and TSP1. The combination of XXMD and FC showed a more pronounced effect. These results indicate that XXMD can improve cerebral IR injury, possibly by inhibiting astrocyte activation and down-regulating the expression of GFAP and TSP1.
Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Ratas , Animales , Astrocitos , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Encéfalo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral MediaRESUMEN
This study aims to explore the effect of Xiaoxuming Decoction on synaptic plasticity in rats with acute cerebral ischemia-reperfusion. A rat model of cerebral ischemia-reperfusion injury was established by middle cerebral artery occlusion(MCAO). Rats were randomly assigned into a sham group, a MCAO group, and a Xiaoxuming Decoction(60 g·kg~(-1)·d~(-1)) group. The Longa score was rated to assess the neurological function of rats with cerebral ischemia for 1.5 h and reperfusion for 24 h. The 2,3,5-triphenyltetrazolium chloride(TTC) staining and hematoxylin-eosin(HE) staining were employed to observe the cerebral infarction and the pathological changes of brain tissue after cerebral ischemia, respectively. Transmission electron microscopy was employed to detect the structural changes of neurons and synapses in the ischemic penumbra, and immunofluorescence, Western blot to determine the expression of synaptophysin(SYN), neuronal nuclei(NEUN), and postsynaptic density 95(PSD95) in the ischemic penumbra. The experimental results showed that the modeling increased the Longa score and led to cerebral infarction after 24 h of ischemia-reperfusion. Compared with the model group, Xiaoxuming Decoction intervention significantly decreased the Longa score and reduced the formation of cerebral infarction area. The modeling led to the shrinking and vacuolar changes of nuclei in the brain tissue, disordered cell arrangement, and severe cortical ischemia-reperfusion injury, while the pathological damage in the Xiaoxuming Decoction group was mild. The modeling blurred the synaptic boundaries and broadened the synaptic gap, while such changes were recovered in the Xiaoxuming Decoction group. The modeling decreased the fluorescence intensity of NEUN and SYN, while the intensity in Xiaoxuming Decoction group was significantly higher than that in the model group. The expression of SYN and PSD95 in the ischemic penumbra was down-regulated in the model group, while such down-regulation can be alleviated by Xiaoxuming Decoction. In summary, Xiaoxuming Decoction may improve the synaptic plasticity of ischemic penumbra during acute cerebral ischemia-reperfusion by up-regulating the expression of SYN and PSD95.
Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Ratas , Animales , Ratas Sprague-Dawley , Isquemia Encefálica/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral Media , Plasticidad Neuronal , ReperfusiónRESUMEN
BACKGROUND: There is insufficient evidence for the ability of vitamin K2 to improve type 2 diabetes mellitus symptoms by regulating gut microbial composition. Herein, we aimed to demonstrate the key role of the gut microbiota in the improvement of impaired glycemic homeostasis and insulin sensitivity by vitamin K2 intervention. METHODS: We first performed a 6-month RCT on 60 T2DM participants with or without MK-7 (a natural form of vitamin K2) intervention. In addition, we conducted a transplantation of the MK-7-regulated microbiota in diet-induced obesity mice for 4 weeks. 16S rRNA sequencing, fecal metabolomics, and transcriptomics in both study phases were used to clarify the potential mechanism. RESULTS: After MK-7 intervention, we observed notable 13.4%, 28.3%, and 7.4% reductions in fasting serum glucose (P = 0.048), insulin (P = 0.005), and HbA1c levels (P = 0.019) in type 2 diabetes participants and significant glucose tolerance improvement in diet-induced obesity mice (P = 0.005). Moreover, increased concentrations of secondary bile acids (lithocholic and taurodeoxycholic acid) and short-chain fatty acids (acetic acid, butyric acid, and valeric acid) were found in human and mouse feces accompanied by an increased abundance of the genera that are responsible for the biosynthesis of these metabolites. Finally, we found that 4 weeks of fecal microbiota transplantation significantly improved glucose tolerance in diet-induced obesity mice by activating colon bile acid receptors, improving host immune-inflammatory responses, and increasing circulating GLP-1 concentrations. CONCLUSIONS: Our gut-derived findings provide evidence for a regulatory role of vitamin K2 on glycemic homeostasis, which may further facilitate the clinical implementation of vitamin K2 intervention for diabetes management. TRIAL REGISTRATION: The study was registered at https://www.chictr.org.cn (ChiCTR1800019663).
Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistencia a la Insulina , Ratones , Animales , Humanos , Vitamina K 2 , ARN Ribosómico 16S , Heces , Glucosa/metabolismo , Obesidad , Suplementos Dietéticos , HomeostasisRESUMEN
OBJECTIVE: To improve the solubility and targeting of Ginsenoside Rg3 (G-Rg3), in the current study, we constructed a novel targeting functional material folic acid -poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (FA-PEOz-CHMC, FPC) modified G-Rg3 liposomes (FPC-Rg3-L). METHODS: FPC was synthesized by using folic acid (FA) as a targeted head coupling with acid-activated poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate. The inhibitory effects of the G-Rg3 preparations on mouse breast cancer cells (4T1) were investigated by CCK-8 assay. Paraffin sections of female BALB/c mice viscera were taken for hematoxylin-eosin (H&E) staining after continuous tail vein injection of G-Rg3 preparations. BALB/c mice bearing triple-negative breast cancer (TNBC) were used as animal models to investigate the inhibition of G-Rg3 preparations on tumor growth and improving quality of life. Transforming growth factor-ß1 (TGF-ß1) and α-smooth muscular actin (α-SMA) were used to investigate the expression of two fibrosis factors in tumor tissues by western blotting. RESULTS: Compared with G-Rg3 solution (Rg3-S) and Rg3-L, FPC-Rg3-L had a significant inhibitory effect on 4T1 cells (p < .01), and the half maximal inhibitory concentration (IC50) of FPC-Rg3-L was significantly lower (p < .01). The H&E results showed that the injection of FPC-Rg3-L and Rg3-S did not cause damage to the organs of mice. Compared with the control group, tumor growth was significantly inhibited in mice treated with FPC-Rg3-L and G-Rg3 solutions (p < .01). CONCLUSIONS: This study presents a new and safe treatment for TNBC, reduces the toxic and side effects of the drug, and provides a reference for the efficient use of Chinese herbal medicine components.
Asunto(s)
Ginsenósidos , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Femenino , Animales , Liposomas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Microambiente Tumoral , Calidad de Vida , Ginsenósidos/farmacología , Línea Celular TumoralRESUMEN
Antioxidative and antiaging abilities of probiotic fermented ginseng (PG) were evaluated in Caenorhabditis elegans (C. elegans). Lifespan and effect on heat stress and acute oxidative stress in C. elegans were significantly enhanced by PG. Antioxidative enzymes such as T-SOD, GSH-PX, CAT were significantly up-regulated, and MDA, ROS and apoptosis levels were significantly down-regulated. At the same time, PG exerted antioxidant and anti-aging activities by reducing the expression of DAF-2 mRNA and increasing the expression of SKN-1 and SOD-3 mRNA in C. elegans. In addition, the mechanism of antioxidative and antiaging activities of PG was explored through gut microbiota sequencing and untargeted metabolomics. The results of gut microbiota indicated that PG could significantly improve the composition and structure of microbes in the gut of C. elegans, and the relative abundance of beneficial bacteria was up-regulated. Untargeted metabolomic results elucidated that PG modulated antioxidant and antiaging activities through neuroactive ligand-receptor interaction, Citrate cycle (TCA cycle), pyruvate metabolism, ascorbate and aldarate metabolism and D-Arginine and D-ornithine metabolism of C. elegans. These results indicated that PG had excellent antioxidant and anti-aging activities, providing research value for the development of functional foods and improvement of aging-related diseases.
Asunto(s)
Proteínas de Caenorhabditis elegans , Microbioma Gastrointestinal , Panax , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacología , Envejecimiento , Estrés Oxidativo , Longevidad/fisiología , Superóxido Dismutasa/metabolismo , ARN Mensajero , Especies Reactivas de Oxígeno/metabolismoRESUMEN
OBJECTIVE: To investigate the anti-coronavirus potential and the corresponding mechanisms of the two ingredients of Reduning Injection: quercetin and luteolin. METHODS: A pseudovirus system was designed to test the efficacy of quercetin and luteolin to inhibit SARS-CoV-2 infection and the corresponding cellular toxicity. Luteolin was tested for its activities against the pseudoviruses of SARS-CoV-2 and its variants. Virtual screening was performed to predict the binding sites by Autodock Vina 1.1.230 and PyMol. To validate docking results, surface plasmon resonance (SPR) was used to measure the binding affinity of the compounds with various proteins of the coronaviruses. Quercetin and luteolin were further tested for their inhibitory effects on other coronaviruses by indirect immunofluorescence assay on rhabdomyosarcoma cells infected with HCoV-OC43. RESULTS: The inhibition of SARS-CoV-2 pseudovirus by luteolin and quercetin were strongly dose-dependent, with concentration for 50% of maximal effect (EC50) of 8.817 and 52.98 µmol/L, respectively. Their cytotoxicity to BHK21-hACE2 were 177.6 and 405.1 µmol/L, respectively. In addition, luetolin significantly blocked the entry of 4 pseudoviruses of SARS-CoV-2 variants, with EC50 lower than 7 µmol/L. Virtual screening and SPR confirmed that luteolin binds to the S-proteins and quercetin binds to the active center of the 3CLpro, PLpro, and helicase proteins. Quercetin and luteolin showed over 99% inhibition against HCoV-OC43. CONCLUSIONS: The mechanisms were revealed of quercetin and luteolin inhibiting the infection of SARS-CoV-2 and its variants. Reduning Injection is a promising drug for COVID-19.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Luteolina , QuercetinaRESUMEN
Kinesin, as a member of the molecular motor protein superfamily, plays an essential function in various plants' developmental processes. Especially at the early stages of plant growth, including influences on plants' growth rate, yield, and quality. In this study, we did a genome-wide identification and expression profile analysis of the kinesin family in barley. Forty-two HvKINs were identified and screened from the barley genome, and a generated phylogenetic tree was used to compare the evolutionary relationships between Rice and Arabidopsis. The protein structure prediction, physicochemical properties, and bioinformatics of the HvKINs were also dissected. Our results reveal the important regulatory roles of HvKIN genes in barley growth. We found many cis- elements related to GA3 and ABA in homeopathic elements of the HvKIN gene and verified them by QRT-PCR, indicating their potential role in the barley kinesin family. The current study revealed the biological functions of barley kinesin genes in barley and will aid in further investigating the kinesin in other plant species.
Asunto(s)
Arabidopsis , Hordeum , Cinesinas/genética , Cinesinas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Familia de Multigenes , Arabidopsis/genéticaRESUMEN
Objective: This study aims to investigate the effectiveness of mindfulness-based cognitive therapy (MBCT) combined with medication therapy in preventing the recurrence of major depressive disorder (MDD) in convalescent patients. Methods: A total of 130 patients with convalescent MDD were enrolled in this prospective study. Sixty-five patients were assigned to the experimental group and received medication therapy combined with MBCT, and 65 patients were assigned to the control group and treated with medication alone. The recurrence rate and related hormonal changes were compared between the two groups. Results: After 1 year of MBCT intervention, eight patients experienced recurrence in the experimental group, a recurrence rate of 12.31%, and 19 patients experienced recurrence in the control group, a recurrence rate of 29.23%. The Hamilton Depression Rating Scale (HAM-D) and the World Health Organization Quality of Life Scale (WHOQOL-BREF) scores in both the experimental and the control groups were significantly improved after treatment (P < 0.05). The difference in the HAM-D scores before and after treatment in the experimental group was 16.74 ± 4.54; this was significantly higher than that of the control group (8 ± 3.89, P < 0.0001). The WHOQOL-BREF scores in the experimental group were significantly improved compared with those of the control group (P < 0.0001). The differences in the levels of corticotrophin-releasing hormone (CRH), adrenocorticotropic hormone, and cortisol before and after treatment in the experimental group and the control group were statistically significant (P < 0.05). The difference in CRH before and after treatment in the experimental group was 16.8 ± 7.2, which was higher than that of the control group (2.75 ± 9.27, P < 0.0001). The intervention with MBCT had a significant impact on the recurrence of MDD [ß = 1.206, P = 0.039, 95% (confidence interval) CI = 0.0790-1.229]. The difference in the HAM-D scores also had a significant impact on the recurrence of MDD (ß = 1.121, P = 0.0014, 95% CI = 0.805-0.976). Conclusion: Compared with medication therapy alone, the use of MBCT combined with medication therapy can effectively prevent the recurrence of MDD in convalescent patients.
RESUMEN
PURPOSE: Holmium laser enucleation of the prostate (HoLEP) is reported to be widely used in the surgical treatment of benign prostatic hyperplasia (BPH), which consists of two procedures: enucleation and morcellation. This study is to examine the efficiency and safety of two different morcellator systems within a cohort of men undergoing HoLEP for BPH. METHODS: A total of 210 consecutive patients undergoing HoLEP and morcellation procedures were enrolled. Individuals were randomly divided into 2 separated groups: the first group (105 patients) was performed with a nephroscope using a mechanical Versacut morcellator and the second (105 patients) was performed with the new morcellation system, nephroscopes and Piranha morcellator. Perioperative characteristics were studied and analyzed. RESULTS: The morcellation time and the morcellation rate was similar when the prostate volume (PV) ≤ 60 mL while the morcellation time was significantly shorter and the morcellation rate was higher in the Piranha group with PV > 60 mL. No significant difference was observed according to the bladder irrigation time, indwelling catheter time, and discharge time. CONCLUSION: Piranha morcellator presents a higher efficiency for the prostate over 60 mL.
Asunto(s)
Characiformes , Terapia por Láser , Láseres de Estado Sólido , Morcelación , Hiperplasia Prostática , Resección Transuretral de la Próstata , Animales , Humanos , Terapia por Láser/métodos , Láseres de Estado Sólido/uso terapéutico , Masculino , Morcelación/efectos adversos , Morcelación/métodos , Estudios Prospectivos , Próstata/cirugía , Hiperplasia Prostática/cirugía , Resección Transuretral de la Próstata/métodos , Resultado del TratamientoRESUMEN
Background: Pregnant women in Malawi are at risk of selenium deficiency, which can have adverse effects on pregnancy outcomes. Interventions for improving selenium status are needed. Objectives: To assess the effect of provision of small-quantity lipid-based nutrient supplements (SQ-LNSs) to Malawian women during pregnancy on their plasma selenium concentrations at 36 wk of gestation. Methods: Pregnant women (≤20 wk of gestation) were randomly assigned to receive daily either: 1) iron and folic acid (IFA); 2) multiple micronutrients (MMN; 130 µg selenium per capsule); or 3) SQ-LNS (130 µg selenium/20 g). Plasma selenium concentrations were measured by inductively coupled plasma mass spectrometry at baseline and after ≥16 wk of intervention (at 36 wk of gestation) and compared by intervention group. Results: At 36 wk of gestation, median (quartile 1, quartile 3) plasma selenium concentrations (micromoles per liter) were 0.96 (0.73, 1.23), 0.94 (0.78, 1.18), and 1.01 (0.85, 1.28) in the IFA, MMN, and SQ-LNS groups, respectively. Geometric mean (GM) plasma selenium concentration was 5.4% (95% CI: 1.8%, 9.0%) higher in the SQ-LNS group than in the MMN group and tended to be higher than in the IFA group (+4.2%; 95% CI: 1.0%, 7.8%). The prevalence of adjusted plasma selenium concentrations <1 µmol/L was 55.1%, 57.8%, and 47.3% in the IFA, MMN, and SQ-LNS groups, respectively; it was lower in the SQ-LNS group than in the MMN group, OR = 0.44 (95% CI: 0.24, 0.83), and tended to be lower than in the IFA group, OR = 0.54 (95% CI: 0.29, 1.03). There was a significant interaction between baseline plasma selenium concentration and intervention group (P = 0.003). In the lowest tertile of baseline selenium concentrations, GM plasma selenium concentration was higher, and the prevalence of low values was lower in the SQ-LNS group compared with the MMN and IFA groups at 36 wk of gestation (P ≤ 0.007). Conclusions: Provision of SQ-LNS containing selenium to pregnant women can be an effective strategy for improving their selenium status.This trial was registered at clinicaltrials.gov (identifier: NCT01239693).
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Bufonis (VB), an animal drug called Chansu in China, is the product of the secretion of Bufo gargarizans Cantor or B. melanostictus Schneider. As a traditional Chinese medicine (TCM) for a long time, it has been widely used in the treatment of heart failure, ulcer, pain, and various cancers. Cinobufaginn (CNB), the cardiotonic steroid or bufalene lactone extracted from VB, has the effects of detoxification, detumescence, and analgesia. AIM OF THE STUDY: The present study aimed to define the effects of CNB on non-small-cell lung cancer (NSCLC) and identify the potential molecular mechanisms. MATERIALS AND METHODS: A549 cells were treated with cinobufagin and cell viability, apoptosis, migration, and invasion were then evaluated using Cell Counting Kit-8 (CCK8) assays, flow cytometry, and Transwell assays, respectively. Moreover, the levels of proliferating cell nuclear antigen (PCNA), cytokeratin8 (CK8), poly ADP-ribose polymerase (PARP), Caspase3, Caspase8, B-cell lymphoma/lewkmia-2(Bcl-2), Bcl2-Associated X(Bax), forkhead box O1 (FOXO1), and euchromatic histone-lysine N-methyltransferase2 (G9a, EHMT2) in A549 cells were evaluated using qRT-PCR and/or Western blot analysis (WB), Co-IP, immunofluorescence, and immunohistochemistry. An in vivo imaging system, TUNEL, Immunofluorescence, and immunohistochemistry were also used to detect proliferating cell nuclear antigen(PCNA), Ki67, E-Cadherin(E-Cad), FOXO1, and G9a in mouse xenograft model experiments. RESULTS: CNB suppressed cell proliferation, migration, and invasion but promoted apoptosis in A549 cells in a dose- and time-dependent manner, while cinobufagin had no cytotoxic effect on BEAS-2B cells. In vivo, cinobufagin inhibited the proliferation, migration, and invasion of A549 cells and promoted their apoptosis. The occurrence of the above phenomena was accompanied by an increase in FOXO1 expression and a decrease in G9a expression. In A549 cells, CNB did not reverse the changes in the proliferation, migration, invasion, and apoptosis of A549 cells after FOXO1 was successfully silenced. CONCLUSION: Our study provides the first evidence that cinobufagin suppresses the malignant biological behaviours of NSCLC cells in vivo and in vitro and suggests that mechanistically, this effect may be achieved by inhibiting the expression of the histone methyltransferase G9a and activating the tumour suppressor gene FOXO1. Taken together, our findings provide important insights into the molecular mechanism underlying cinobufagin's anticancer activity, and suggest that cinobufagin could be a candidate for targeted cancer therapy.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Células A549 , Animales , Apoptosis , Bufanólidos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/farmacología , Regulación Neoplásica de la Expresión Génica , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo , Antígenos de Histocompatibilidad/farmacología , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , RatonesRESUMEN
Taking regulating the thoroughfare vessel and the conception vessel, tonifying liver and kidney, calming mind as the treatment principle, Tiaojing Cuyun acupuncture (acupuncture for regulating menstruation and promoting pregnancy) is commonly used in clinical treatment of diseases with ovarian function decline, and recommends full cycle acupuncture treatment. Clinical research shows that Tiaojing Cuyun acupuncture can improve menstruation and ovulation, increase the reserve function and response of ovary as well as endometrial receptivity, so as to improve the pregnancy outcome. It can also improve the related symptoms caused by negative emotions and low estrogen, and comprehensively enhance the health related quality of life in patients. The mechanism of Tiaojing Cuyun acupuncture mainly involves 2 aspects, i.e. overall regulation on hypothalamus-pituitary-ovary (HPO) axis and the local regulation on FSH/cAMP signal transduction in ovarian granulosa cells.
Asunto(s)
Terapia por Acupuntura , Calidad de Vida , Femenino , Embarazo , Humanos , Ovario , Menstruación , OvulaciónRESUMEN
Background: Gou Qi Zi (Lycium barbarum) is a traditional herbal medicine with antioxidative effects. Although Gou Qi Zi has been used to prevent premature aging and in the treatment of non-small cell lung cancer (NSCLC), its mechanism of action in NSCLC remains unclear. The present study utilized network pharmacology to assess the potential mechanism of action of Gou Qi Zi in the treatment of NSCLC. Methods: The TCMSP, TCMID, SwissTargetPrediction, DrugBank, DisGeNET, GeneCards, OMIM and TTD databases were searched for the active components of Gou Qi Zi and their potential therapeutic targets in NSCLC. Protein-protein interaction networks were identified and the interactions of target proteins were analyzed. Involved pathways were determined by GO enrichment and KEGG pathway analyses using the Metascape database, and molecular docking technology was used to study the interactions between active compounds and potential targets. These results were verified by cell counting kit-8 assays, BrdU labeling, flow cytometry, immunohistochemistry, western blotting, and qRT-PCR. Results: Database searches identified 33 active components in Gou Qi Zi, 199 predicted biological targets and 113 NSCLC-related targets. A network of targets of traditional Chinese medicine compounds and potential targets of Gou Qi Zi in NSCLC was constructed. GO enrichment analysis showed that Gou Qi Zi targeting of NSCLC was mainly due to the effect of its associated lipopolysaccharide. KEGG pathway analysis showed that Gou Qi Zi acted mainly through the PI3K/AKT1 signaling pathway in the treatment of NSCLC. Molecular docking experiments showed that the bioactive compounds of Gou Qi Zi could bind to AKT1, C-MYC and TP53. These results were verified by experimental assays. Conclusion: Gou Qi Zi induces apoptosis and inhibits proliferation of NSCLC in vitro and in vivo by inhibiting the PI3K/AKT1 signaling pathway.
RESUMEN
Background: The coronavirus disease 2019 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 210 million individuals globally and resulted in over 4 million deaths since the first report in December 2019. The early use of traditional Chinese medicine (TCM) for light and ordinary patients, can rapidly improve symptoms, shorten hospitalization days and reduce severe cases transformed from light and normal. Many TCM formulas and products have a wide application in treating infectious and non-infectious diseases. Polygonum cuspidatum Sieb. et Zucc. (P. cuspidatum), is an important Traditional Chinese Medicine with actions of clearing away heat and eliminating dampness, draining the gallbladder to relieve jaundice, removing blood stasis to alleviate pain, resolving phlegm and arrest cough. In the search for anti-SARS-CoV-2, P. cuspidatum was recommended as as a therapeutic drug of COVID-19 pneumonia.In this study, we aimed to identifies P. cuspidatum is the potential broad-spectrum inhibitor for the treatment of coronaviruses infections. Methods: In the present study , we infected human malignant embryonal rhabdomyoma (RD) cells with the OC43 strain of the coronavirus, which represent an alternative model for SARS-CoV-2 and then employed the cell viability assay kit for the antiviral activity. We combined computer aided virtual screening to predicte the binding site and employed Surface plasmon resonance analysis (SPR) to comfirm the interaction between drugs and coronavirus. We employed fluorescence resonance energy transfer technology to identify drug's inhibition in the proteolytic activity of 3CLpro and Plpro. Results: Based on our results, polydatin and resveratrol derived from P. cuspidatum significantly suppressed HCoV-OC43 replication. 50% inhibitory concentration (IC50) values of polydatin inhibited SARS-CoV-2 Mpro and Plpro, MERS Mpro and Plpro were 18.66, 125, 14.6 and 25.42 µm, respectively. IC50 values of resveratrol inhibited SARS-CoV-2 Mpro and Plpro, MERS Mpro and Plpro were 29.81 ,60.86, 16.35 and19.04 µM, respectively. Finally, SPR assay confirmed that polydatin and resveratrol had high affinity to SARS-CoV-2, SARS-CoV 3Clpro, MERS-CoV 3Clpro and PLpro protein. Conclusions: we identified the antiviral activity of flavonoids polydatin and resveratrol on RD cells. Polydatin and resveratrol were found to be specific and selective inhibitors for SARS-CoV-2, 3CLpro and PLpro, viral cysteine proteases. In summary, this study identifies P. cuspidatum as the potential broad-spectrum inhibitor for the treatment of coronaviruses infections.
Asunto(s)
Medicamentos Herbarios Chinos/química , Fallopia japonica/química , Glucósidos/farmacología , Resveratrol/farmacología , SARS-CoV-2/efectos de los fármacos , Estilbenos/farmacología , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Glucósidos/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Medicina Tradicional China/métodos , Pandemias , Unión Proteica , Resveratrol/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Estilbenos/metabolismo , Resonancia por Plasmón de Superficie/métodos , Proteínas Virales/metabolismoRESUMEN
BACKGROUND: Selenium (Se), an essential trace mineral, has been implicated in preterm birth (PTB). We aimed to determine the association of maternal Se concentrations during pregnancy with PTB risk and gestational duration in a large number of samples collected from diverse populations. METHODS: Gestational duration data and maternal plasma or serum samples of 9946 singleton live births were obtained from 17 geographically diverse study cohorts. Maternal Se concentrations were determined by inductively coupled plasma mass spectrometry analysis. The associations between maternal Se with PTB and gestational duration were analysed using logistic and linear regressions. The results were then combined using fixed-effect and random-effect meta-analysis. FINDINGS: In all study samples, the Se concentrations followed a normal distribution with a mean of 93.8 ng/mL (SD: 28.5 ng/mL) but varied substantially across different sites. The fixed-effect meta-analysis across the 17 cohorts showed that Se was significantly associated with PTB and gestational duration with effect size estimates of an OR=0.95 (95% CI: 0.9 to 1.00) for PTB and 0.66 days (95% CI: 0.38 to 0.94) longer gestation per 15 ng/mL increase in Se concentration. However, there was a substantial heterogeneity among study cohorts and the random-effect meta-analysis did not achieve statistical significance. The largest effect sizes were observed in UK (Liverpool) cohort, and most significant associations were observed in samples from Malawi. INTERPRETATION: While our study observed statistically significant associations between maternal Se concentration and PTB at some sites, this did not generalise across the entire cohort. Whether population-specific factors explain the heterogeneity of our findings warrants further investigation. Further evidence is needed to understand the biologic pathways, clinical efficacy and safety, before changes to antenatal nutritional recommendations for Se supplementation are considered.