Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Cir Bras ; 37(3): e370304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35674582

RESUMEN

PURPOSE: To investigate the protective effects of Shenkang injection (SKI) on adenine-induced chronic renal failure (CRF) in rat. METHODS: Sprague Dawley rats were randomly divided into five groups: control, model, and SKI groups (5, 10, 20 mL/kg). Rats in model and SKI groups were treated with adenine i.g. at a dose of 150 mg/kg every day for 12 weeks to induce CRF. Twelve weeks later, SKI was administered to the rat i.p. for four weeks. The effects of SKI on kidney injury and fibrosis were detected. RESULTS: SKI inhibited the elevation of the urine level of N-acetyl-b-D-glucosaminidase, kidney injury molecule-1, beta-2-microglobulin, urea protein in CRF rats. The serum levels of uric acid and serum creatinine increased and albumin decreased in the model group, which was prevented by SKI. SKI inhibited the release of inflammatory cytokines and increasing the activities of antioxidant enzymes in serum. SKI inhibited the expression of transforming growth factor-ß1, vascular cell adhesion molecule 1, intercellular adhesion molecule 1, collagen I, collagen III, endothelin-1, laminin in kidney of CRF rats. CONCLUSIONS: SKI protected against adenine-induced kidney injury and fibrosis and exerted anti-inflammatory, and antioxidant effects in CRF rats.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Adenina/metabolismo , Adenina/farmacología , Adenina/uso terapéutico , Animales , Medicamentos Herbarios Chinos , Fibrosis , Riñón , Fallo Renal Crónico/inducido químicamente , Fallo Renal Crónico/tratamiento farmacológico , Fallo Renal Crónico/prevención & control , Ratas , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/tratamiento farmacológico
2.
Phytomedicine ; 68: 153169, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31999976

RESUMEN

BACKGROUND: Activation of NLRP3 inflammasome plays a key role in cardiac dysfunction for acute myocardial ischemia-reperfusion injury. Scutellarin (Scu) is a flavonoid purified from Erigeron breviscapus. Whether Scu has any influence on the activation of NLRP3 inflammasome in cardiomyocytes remains unknown. PURPOSE: We aimed to examine the therapeutic effect of Scu on cardiomyocyte ischemia-reperfusion (I/R) injury and its effect on NLRP3 inflammasome in rats with acute myocardial I/R injury and anoxia/reoxygenation (A/R)-induced H9c2 injuries. METHODS: Heart injuries were induced through 30 min of ischemia followed by 24 h of reperfusion. Scu was intraperitoneally administered 15 min before vascular ligation. Effects of Scu on cardiac injury were detected by echocardiograms, TTC staining, and histological and immunohistochemical analyses. The effects of Scu on biochemical parameters were analyzed. H9c2 cells were pretreated with different concentrations of Scu for 6 h before A/R exposure. Afterward, cell viability, LDH release, and Hoechst 33342 and peromide iodine double staining were determined. Western blot analyses of proteins, including those involved in autophagy, NLRP3, mTOR complex 1 (mTORC1), and Akt signaling, were conducted. RESULTS: In vivo study revealed that Scu improved diastolic dysfunction, ameliorated myocardium structure abnormality, inhibited myocyte apoptosis and inflammatory response, and promoted autophagy. Scu reduced NLRP3 inflammasome activation, inhibited mTORC1 activity, and increased Akt phosphorylation. In vitro investigation showed the same results. The Scu-mediated NLRP3 inflammasome and mTORC1 inhibition and cardioprotection were abolished through the genetic silencing of Akt by siRNA. CONCLUSIONS: The cardioprotective effect of Scu was achieved through its anti-inflammatory effect. It suppressed the activation of NLRP3 inflammasome. In addition, inflammasome restriction by Scu was dependent on Akt activation and mTORC1 inhibition.


Asunto(s)
Apigenina/farmacología , Cardiotónicos/farmacología , Glucuronatos/farmacología , Inflamasomas/efectos de los fármacos , Daño por Reperfusión Miocárdica/prevención & control , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley
3.
Mycorrhiza ; 28(3): 285-300, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29455337

RESUMEN

Liquorice (Glycyrrhiza uralensis) is an important medicinal plant for which there is a huge market demand. It has been reported that arbuscular mycorrhizal (AM) symbiosis and drought stress can stimulate the accumulation of the active ingredients, glycyrrhizin and liquiritin, in liquorice plants, but the potential interactions of AM symbiosis and drought stress remain largely unknown. In the present work, we investigated mycorrhizal effects on plant growth and accumulation of glycyrrhizin and liquiritin in liquorice plants under different water regimes. The results indicated that AM plants generally exhibited better growth and physiological status including stomatal conductance, photosynthesis rate, and water use efficiency compared with non-AM plants. AM inoculation up-regulated the expression of an aquaporin gene PIP and decreased root abscisic acid (ABA) concentrations under drought stress. In general, AM plants displayed lower root carbon (C) and nitrogen (N) concentrations, higher phosphorus (P) concentrations, and therefore, lower C:P and N:P ratios but higher C:N ratio than non-AM plants. On the other hand, AM inoculation increased root glycyrrhizin and liquiritin concentrations, and the mycorrhizal effects were more pronounced under moderate drought stress than under well-watered condition or severe drought stress for glycyrrhizin accumulation. The accumulation of glycyrrhizin and liquiritin in AM plants was consistent with the C:N ratio changes in support of the carbon-nutrient balance hypothesis. Moreover, the glycyrrhizin accumulation was positively correlated with the expression of glycyrrhizin biosynthesis genes SQS1, ß-AS, CYP88D6, and CYP72A154. By contrast, no significant interaction of AM inoculation with water treatment was observed for liquiritin accumulation, while we similarly observed a positive correlation between liquiritin accumulation and the expression of a liquiritin biosynthesis gene CHS. These results suggested that AM inoculation in combination with proper water management potentially could improve glycyrrhizin and liquiritin accumulation in liquorice roots and may be practiced to promote liquorice cultivation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glomeromycota/fisiología , Glycyrrhiza uralensis/microbiología , Glycyrrhiza uralensis/fisiología , Micorrizas/fisiología , Sequías , Flavanonas/metabolismo , Glucósidos/metabolismo , Glycyrrhiza uralensis/genética , Glycyrrhiza uralensis/crecimiento & desarrollo , Ácido Glicirrínico/metabolismo , Minerales/metabolismo , Fotosíntesis , Estrés Fisiológico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA