Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Antioxidants (Basel) ; 12(10)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37891958

RESUMEN

Tea tree oil (TTO) is an essential plant oil with diverse antibacterial and antioxidant properties; however, whether the role played by TTO in low fish meal (LF) diets induced the observed effects in the farmed crustaceans remains unclear. Therefore, this study used Macrobrachium rosenbergii as the model crustacean, and an 8-week feeding experiment with NF (normal fish meal), LF (soybean meal replacing 40% fish meal), and LFT (LF with 200 mg/kg TTO) diets was conducted to evaluate the positive effects of TTO under the LF diet. Compared to the NF diet, the LF diet reduced hemolymph antioxidant capacity and non-specific immunity, and induced hepatopancreas apoptosis and damage. However, in comparison with LF, LTF significantly ameliorated morphological impairment in the hepatopancreas, improved hepatopancreas energy metabolism by upregulating the Bcl-2/Bax and Akt/mTOR pathways, and enhanced antioxidant and non-specific immune capacity by activating the NF-κB/NO pathway. In addition, LFT repaired intestinal barrier injury and the imbalance of intestinal microbiota induced by the LF diet. Moreover, the Pearson correlation revealed the variations of the above indicators, which were related to the abundance changes of Klebsiella, Clostridium sensu stricto 12, Thermobifida, Bifidobacterium, and Alistipes, indicating that these microbes might serve as prospective targets for the intestine-hepatopancreas axis to affect hepatopancreas apoptosis, metabolism, and non-specific immunity. In summary, 200 mg/kg TTO supplementation mediated gut microbiota and positively improved energy metabolism and non-specific immunity, thereby alleviating hepatopancreas dysplasia and damage induced by the LF diet in M. rosenbergii.

2.
Antioxidants (Basel) ; 12(8)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37627518

RESUMEN

Aquaculture feed containing olive oil (OO) instead of fish oil (FO) can cause oxidative stress and impair gonad development in fish. We determined the effect of dietary OO-induced oxidative stress on ovarian development, and explored whether vitamin E (VE) could mitigate negative effects. Female Nile tilapia (Oreochromis niloticus) were fed for 10 weeks with four diets: 5% OO + 70 mg/kg VE, 5% OO + 200 mg/kg VE, 5% FO + 70 mg/kg VE, or 5% FO + 200 mg/kg VE. Dietary OO reduced the specific growth rate and gonadosomatic index, inhibited superoxide dismutase and catalase, delayed ovarian development, decreased serum sex hormone levels, and reduced ovarian triglyceride and n-3 highly unsaturated fatty acid contents. The transcript levels of genes encoding sex hormone receptors (erα, fshr, lhr) and components of the lipid metabolism pathway (pparα, pparγ, hsl, accα, elovl6), the nrf2 signaling pathway (nrf2, keap1), and the nf-κb signaling pathway (nf-κb, tnfα, infγ, il1ß) differed between the 70VE/OO and 70VE/FO groups. Supplementation with 200 mg/kg VE mitigated the adverse effects of OO by improving antioxidant capacity and alleviating inflammation and abnormal lipid metabolism. This may be because VE is an antioxidant and it can regulate the nrf2-nf-κb signaling pathway.

3.
Front Immunol ; 13: 906435, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711420

RESUMEN

Tea tree oil (TTO) is a pure natural plant essential oil. The studies evaluated the hepatopancreas lipid metabolism and antioxidant efficacy of Macrobrachium rosenbergii fed with 0 (CT group) and 100 mg/kg TTO (TT group) by label-free quantification proteomic analysis. Compared to the CT group, the TT group improved growth performance and increased the survival rate after stress. Dietary TTO also decreased hemolymph AST and ALT activities and decreased hepatopancreatic vacuolation. At the same time, hepatopancreas lipids droplets and hemolymph lipids (TG, TC, LDL-C) were decreased, and the peroxidation products content (MDA, LPO, 4-HNE) was also decreased. In addition, the levels of hepatopancreas antioxidant enzymes (T-AOC, CAT, and SOD) were increased in the TT group. With proteomic analysis, a total of 151 differentially expressed proteins (DEPs) (99 up-regulated and 52 down-regulated) were identified in the hepatopancreas. Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction analysis showed that the 16 DEPs have interactions, which are mainly involved in the pathways related to lipid metabolism (fatty acid biosynthesis, fatty acid metabolism, glycerophospholipid metabolism) and redox reaction (cytochrome P450 enzyme systems). Furthermore, the mRNA expression of 15 proteins followed the proteomic analysis with qRT-PCR validation. Pearson correlation analysis showed that fatty acids and glycerophospholipid metabolism-related proteins were highly correlated to peroxide content, glycerophospholipid metabolism, and cytochrome P450 system-related proteins (CYP1A1, GSTT1, GPX4) were highly correlated to AST and ALT. Additionally, GPX4 is closely related to peroxide content and antioxidant enzyme activity. Our results revealed that TTO plays a protective role in the hepatopancreas targeting the critical enzymes and antioxidant reactions in lipid metabolism. Provides a new perspective to elucidate the action path of TTO in protecting invertebrate hepatopancreas, highlights the influence of lipid metabolism on hepatopancreas health and the interaction between lipid metabolism and antioxidant system in the regulation of TTO.


Asunto(s)
Palaemonidae , Aceite de Árbol de Té , Animales , Antioxidantes/metabolismo , Ácidos Grasos/metabolismo , Glicerofosfolípidos , Metabolismo de los Lípidos/genética , Peróxidos , Proteómica
4.
Fish Shellfish Immunol ; 120: 458-469, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34929307

RESUMEN

This study aimed to investigate the effects of dietary tea tree oil (TTO) on the performance, intestinal antioxidant capacity, and non-specific immunity after ammonia nitrogen stress in Macrobrachium rosenbergii. Six experimental diets were formulated with 0, 25, 50, 100, 200, 400 mg/kg TTO, respectively. A total of 900 prawns (average initial weight, 0.39 ± 0.01 g) were randomly assigned to 6 groups in triplicate in 18 tanks. After an 8-week feeding trial, 20 prawns from each tank were changed with 20 mg/L ammonia stress for 24 h. The results showed that 100 mg/kg TTO significantly increased prawns performance and survival rate compared with the control group. Moreover, 100 and 200 mg/kg TTO significantly improved intestinal antioxidant capabilities by increasing SOD enzyme activities and decreasing MDA levels. In addition, the prawns fed with 100 mg/kg TTO diet showed the highest survival rate under ammonia stress. After ammonia stress, the group of 100 mg/kg TTO significantly improved antioxidant capacity by increasing hemolymph respiratory burst activity, as well as intestinal anti-superoxide anion activity and SOD. Coincidentally, 100 mg/kg TTO significantly upregulated the intestinal relative expression of antioxidant-related genes (peroxiredoxin-5). Further, it was found that 100 mg/kg TTO activated the toll-dorsal pathway in prawns, which performed the similar function as the classic NF-κB pathway by upregulating the TNF-α and IL-1. Finally, 100 mg/kg TTO increased the levels of iNOS activities and NO contents after ammonia stress and enhanced non-specific immunity. The results indicated that 100 mg/kg TTO could significantly improve the M. rosenbergii performance, antioxidant capacity and ammonia stress resistance. We suggested that the mechanisms may be attributed to that TTO enhanced the antioxidant capacity and non-specific immunity of M. rosenbergii via the NF-κB signal pathway.


Asunto(s)
Amoníaco/toxicidad , Inmunidad Innata , Palaemonidae , Aceite de Árbol de Té , Animales , Antioxidantes/metabolismo , Dieta/veterinaria , FN-kappa B , Palaemonidae/inmunología , Superóxido Dismutasa
5.
PLoS One ; 16(2): e0246417, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33571255

RESUMEN

In high-density aquaculture, fish health can suffer because of excessive feeding, which causes fatty liver disease. Siberian ginseng (Acanthopanax senticosus) has been used as a feed additive to promote animal growth, immunity, and lipid metabolism. In this study, we explored the effects of A. senticosus on the physiology of hybrid yellow catfish (Tachysurus fulvidraco ♀ × Pseudobagrus vachellii ♂). A control group and five groups fed diets containing A. senticosus (0.5, 1, 2, 4, and 8 g A. senticosus/kg feed) were established and maintained for 8 weeks. Dietary supplementation with A. senticosus at 4 g/kg promoted growth of the hybrid yellow catfish. Serum total cholesterol (TC) and triacylglycerol (TG) levels at 2 g/kg A. senticosus (TC: 1.31 mmol/L; TG: 1.08 mmol/L) were significantly lower than in the control group (TC: 1.51 mmol/L; TG: 1.41 mmol/L), and 4 g/kg A. senticosus (17.20 µmol/g tissue) reduced the liver TG level compared with the control group (21.36 µmol/g tissue) (P <0.05). Comparative transcriptomic analysis of liver tissue between the control group and the group showing optimum growth (4 g/kg A. senticosus) revealed 820 differentially expressed genes and 44 significantly enriched pathways, especially lipid metabolism pathways such as unsaturated fatty acid and fatty acid metabolism. The transcript levels of five lipid metabolism-related genes were determined by quantitative real-time PCR. The results showed that 2-4 g/kg A. senticosus supplementation reduced the FADS2, ELOVL2, CYP24a, and PLPP3 transcript levels and 4 g/kg A. senticosus increased the DIO2 transcript level (P <0.05), leading to altered synthesis of TG and thyroxine and reduced fat deposition in the liver. Our results show that dietary A. senticosus affects the regulation of fat metabolism and promotes the growth of hybrid yellow catfish. A. senticosus is a healthy feed additive, and the appropriate dietary supplementation rate is 2-4 g/kg.


Asunto(s)
Alimentación Animal , Bagres/crecimiento & desarrollo , Bagres/genética , Metabolismo de los Lípidos , Lípidos/genética , Alimentación Animal/análisis , Animales , Acuicultura , Bagres/fisiología , Suplementos Dietéticos/análisis , Panax/química , Transcriptoma
6.
Artículo en Inglés | MEDLINE | ID: mdl-33360820

RESUMEN

Acanthopanax senticosus (APS) is a natural and officinal herb with an impressive range of health benefits for animal. An 8-week feeding trail with different APS levels (0, 0.5, 1, 2, 4, and 8‰) was conducted to evaluate the promotive effects of APS in GIFT. Results indicate that APS improved the growth performance, improved specific growth ratio (SGR) and feed efficiency ratio (FER), the optimum APS supplementation was estimated to 1.97‰ based on the regression analysis of SGR. Meanwhile, 2‰ and 4‰ APS improved the immune and antioxidant capacity in some extent evidenced by the plasma and hepatic biomarkers. With the analysis of transcriptome sequencing, 293 differentially expressed genes (DEGs) were identified, including 106 up-regulated and 187 down-regulated. According to the GO and KEGG enrichments, DEGs were mainly involved in lipid metabolism regulation, followed by amino acid metabolism, carbohydrate metabolism, immunity, and antioxidant response. Transcriptional expression of PPARs signaling and key genes retrieved from transcriptome database confirmed that lipid metabolism was the main active biological process in response to dietary APS administration. These results indicate optimum APS (2‰) could be used as a feed additive that improve the growth performance by regulating lipid metabolism. This may provide insights for Chinese herb additive application in aquaculture production.


Asunto(s)
Alimentación Animal , Cíclidos/crecimiento & desarrollo , Eleutherococcus , Alimentos Funcionales , Plantas Medicinales , Alimentación Animal/análisis , Animales , Cíclidos/genética , Cíclidos/inmunología , Cíclidos/metabolismo , Eleutherococcus/química , Alimentos Funcionales/análisis , Perfilación de la Expresión Génica , Metabolismo de los Lípidos , Plantas Medicinales/química , Transcriptoma
7.
Artículo en Inglés | MEDLINE | ID: mdl-33141079

RESUMEN

Baicalin, a main bioactive compound of Scutellaria baicalensis, has a variety of pharmacological activities including antioxidation, anti-inflammation and hepatoprotection. However, there are few reports on these biological activities in fish. Therefore, the aim of this study was to assess the effects of baicalin on growth performance, antioxidative status and hepatoprotection in tilapia. The fish were fed on different doses of baicalin (0, 0.4, 0.8 and 1.6 g/kg diet). After feeding 60 days, parts of fishes were netted, and the blood, liver, gills and muscle tissues were collected to analyze the antioxidative effect. The remaining fishes were injected with saline or hydrogen peroxide (H2O2) for challenge test. The results showed that the specific growth rate of fish was slightly increased in three baicalin treatments, and the feed efficiency was clearly improved in 0.4 g/kg baicalin treatment. Meanwhile, the antioxidative capacity in blood, liver and/or gill was enhanced in treatments with 0.4, 0.8 and/or 1.6 g/kg baicalin. After challenge test, the pre-treatments with baicalin effectively alleviated H2O2-induced liver injury. In serum and liver, pre-treatments with 0.8 and/or 1.6 g/kg baicalin suppressed the oxidative damage induced by H2O2, as evidenced by improvement of the levels of SOD, T-AOC and GSH and the decline of MDA level. More important, pre-treatments with 0.4, 0.8 and/or 1.6 g/kg baicalin blocked the upregulation of mRNA levels of tlr1, myd88, irak4, rela, tnf-α and il-1ß in H2O2-induced liver injury. In summary, dietary baicalin supplementation could improve feed efficiency, enhance antioxidative ability and alleviate oxidative stress-induced hepatotoxicity in tilapia.


Asunto(s)
Antioxidantes/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Cíclidos/metabolismo , Flavonoides/farmacología , Peróxido de Hidrógeno/toxicidad , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Cíclidos/crecimiento & desarrollo , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Flavonoides/administración & dosificación , Branquias/efectos de los fármacos , Branquias/metabolismo , Hígado/metabolismo , Hígado/patología , Oxidantes/toxicidad , Sustancias Protectoras/farmacología , Factores de Tiempo
8.
Front Physiol ; 11: 713, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655418

RESUMEN

Selenium (Se) is an essential trace element for aquatic animals. The aquatic plant Potamogeton maackianus is an important natural food of Chinese mitten crab (Eriocheir sinensis). The aim of this study was to determine whether the antioxidant and immune responses of Chinese mitten crab are affected by including Se-cultured P. maackianus in the diet. Three groups of P. maackianus were cultured at levels of 0.02 mg/kg Se, 8.83 mg/kg Se, and 16.92 mg/kg Se, and the plants in these groups were used in experimental diets fed to crabs (dietary Se content of 0.05, 0.43, and 0.82 mg/kg, respectively). Compared with crabs in the 0.05 mg/kg group, those in the 0.82 mg/kg group showed significantly increased specific growth rate, protease and lipase activities, triglyceride and cholesterol contents, and Se content in the hepatopancreas and muscle (P < 0.05); increased activities of glutathione peroxidase, glutathione reductase, and catalase in the antioxidant system; increased transcript levels of MT (encoding metallothionein); and decreased malondialdehyde content (P < 0.05). At the end of the rearing experiment, the crabs in the different groups were exposed to copper (Cu2+) stress for 96 h. All the juvenile crabs in the 0.43 and 0.82 mg/kg groups survived 96 h of Cu2+ stress. Crabs in the 0.82 mg/kg group showed enhanced antioxidant responses under Cu2+ stress, increased transcript levels of MT and LYZ, and increased resistance. Therefore, supplementation of the diet of Chinese mitten crab with increased levels of Se-cultured P. maackianus can reduce oxidative stress under Cu2+ exposure, activate the immune response, and benefit growth.

9.
Fish Shellfish Immunol ; 97: 540-553, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31881329

RESUMEN

This study investigated the effects of dietary curcumin on growth performance, non-specific immunity, antioxidant capacity and related genes expression of NF-κB and Nrf2 signaling pathways in grass carp (Ctenopharyngodon idella). A total of 525 juvenile grass carps with mean initial body weight of (5.30 ± 0.10) g were randomly distributed into five groups with three replicates each, fed five diets containing graded levels of curcumin (0, 196.11, 393.67, 591.46 and 788.52 mg/kg diet) for 60 days. After feeding trial, fifteen fish per tank were challenged with Aeromonas hydrophila and the mortalities were recorded for 7 days. The results showed that optimal dietary curcumin (393.67 mg/kg diet) improved the weight gain (WG) and specific growth rate (SGR) of juvenile grass carp, reduced feed conversion ratio (FCR) and the mortalities after challenge (P < 0.05). Moreover, optimal dietary curcumin increased the activities of lysozyme (LYZ) and acid phosphatase (ACP), and complement 3 (C3) and C4 levels, decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in serum of grass carp after injection with A. hydrophila (P < 0.05). Meanwhile, optimal dietary curcumin up-regulated the mRNA levels of LYZ, C3 and antimicrobial peptides [hepcidin, liver-expressed antimicrobial peptide-2 (LEAP-2), ß-defensin], and anti-inflammatory cytokines of interleukin-10 (IL-10) and transforming growth factor ß1 (TGF-ß1), and inhibitor of κBα (IκBα), whereas down-regulated pro-inflammatory cytokines of tumor necrosis factor-α (TNF-α), IL-1ß, IL-6 and IL-8, and nuclear factor kappa B p65 (NF-κB p65), IκB kinases (IKKα, IKKß and IKKγ) mRNA levels in the liver and blood of grass carp after injection with A. hydrophila (P < 0.05). In addition, optimal dietary curcumin increased the reduced glutathione (GSH) content and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR), reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the liver of grass carp after injection with A. hydrophila (P < 0.05). Meanwhile, optimal dietary curcumin up-regulated the mRNA levels of these antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2), whereas down-regulated Kelch-like ECH-associated protein (Keap) 1a and Keap 1b mRNA levels (P < 0.05) in the liver and blood of grass carp after injection with A. hydrophila. Thus, optimal dietary curcumin supplementation could promote growth of juvenile grass carp, reduce FCR, and enhance disease resistance, innate immunity and antioxidant capacity of fish, attenuating inflammatory response. However, dietary excessive curcumin had negative effect on fish. Based on second-order regression analysis between dietary curcumin contents and weight gain, the optimum requirement of dietary curcumin in juvenile grass carp was determined to be 438.20 mg/kg diet.


Asunto(s)
Carpas/crecimiento & desarrollo , Carpas/inmunología , Curcumina/farmacología , Suplementos Dietéticos/análisis , Proteínas de Peces/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Transducción de Señal , Aeromonas hydrophila , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Carpas/microbiología , Citocinas/inmunología , Resistencia a la Enfermedad , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/prevención & control , Inmunidad Innata , Factor 2 Relacionado con NF-E2/inmunología , FN-kappa B/inmunología
10.
PLoS One ; 14(11): e0224995, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31714944

RESUMEN

High-density aquaculture and nutritional imbalances may promote fatty liver in genetically improved farmed tilapia (GIFT, Oreochromis niloticus), thus reducing the gains achieved by breeding. In this study, apple peel powder (APP) was used as a feed additive for GIFT. A control group (fed on a diet without APP) and five groups fed on diets supplemented with APP (at 0.05%, 0.1%, 0.2%, 0.4%, or 0.8% of the diet, by weight) were established to investigate the effects of APP on GIFT growth performance and physiological parameters, and on gene expression as determined by transcriptomic analysis. Dietary supplementation with APP at 0.2% promoted GIFT growth, reduced total cholesterol and triacylglycerol levels in the serum and liver, and decreased alanine aminotransferase and aspartate aminotransferase activities in the serum. Gene expression profiles in the liver were compared among the control, 0.2% APP, and 0.8% APP groups, and differentially expressed genes among these groups were identified. Annotation analyses using tools at the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases showed that the differentially expressed genes were mainly involved in the regulation of immunity and fat metabolism. The results showed that excessive supplementation with APP in the diet significantly inhibited the expression of insulin-like growth factor 2 and liver-type fatty acid-binding protein, and stimulated the expression of fatty acid desaturase 2, heat shock protein 90 beta family member 1, and nuclear factor kappa B. This resulted in disordered lipid metabolism and increased pro-inflammatory reactions, which in turn caused liver damage. Therefore, APP has good potential as an environmentally friendly feed additive for GIFT at levels of 0.1%-0.2% in the diet, but excessive amounts can have adverse effects.


Asunto(s)
Suplementos Dietéticos , Hígado/metabolismo , Malus/química , Tilapia/genética , Tilapia/metabolismo , Alimentación Animal , Animales , Biomarcadores , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Hígado/patología , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados , Tilapia/sangre , Tilapia/crecimiento & desarrollo
11.
Fish Shellfish Immunol ; 94: 842-851, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31585245

RESUMEN

Dietary lipids and fatty acids are involved in cell metabolism and animal physiological regulation. However, oxidized lipids could induce oxidative stress and disorder normal growth and physiological health in fish. A 12-week rearing experiment with 6% fish oil (6F), 6% oxidized fish oil (6OF) and emodin supplemented diets (6F + E, 6OF + E) was conducted to evaluate the protective mechanism of emodin on oxidized fish oil stress in Megalobrama amblycephala. Results indicate that, under oxidized fish oil stress, emodin rescued the growth performance inhibition, improved special growth ratio (SGR), and reduced feed conversion ratio (FCR) and hepatosomatic index (HSI); rescued intestine histological impairment, ameliorated the structural expansion and membrane damage of mitochondria in intestine cells, and increased the length and intensity of intestinal villus. Moreover, emodin enhanced serum immune and antioxidant enzyme activity, increased metabolic activity through PPARs signaling, increased antioxidant capacity through PPARs and Nrf2-Keap1 signaling based on the transcriptional expression of specific genes. These results indicate emodin could be used as an effective immunostimulant to protect organism form oxidative stress induced by dietary oxidized lipid. This may provide insights for oxidized lipid prevention in aquaculture production.


Asunto(s)
Cyprinidae/inmunología , Emodina/farmacología , Aceites de Pescado/efectos adversos , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Sustancias Protectoras/farmacología , Transducción de Señal/inmunología , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Cyprinidae/genética , Cyprinidae/crecimiento & desarrollo , Cyprinidae/metabolismo , Dieta/efectos adversos , Dieta/veterinaria , Grasas Insaturadas en la Dieta/efectos adversos , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Emodina/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Estrés Oxidativo , Sustancias Protectoras/administración & dosificación , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos
12.
Fish Shellfish Immunol ; 93: 395-405, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31374313

RESUMEN

Radix Bupleuri extract (RBE) is one of the most popular oriental herbal medicines, which has anti-oxidative and anti-inflammatory properties. However, its protective effects and underlying molecular mechanisms on oxidative damage in tilapia are still unclear. The aims of the study were to explore the anti-oxidative, anti-inflammatory and hepatoprotective effects of RBE against oxidative damage, and to elucidate underlying molecular mechanisms in fish. Tilapia received diet containing three doses of RBE (0, 1 and 3 g/kg diet) for 60 days, and then were given an intraperitoneal injection of H2O2 or saline. Before injection, RBE treatments improved growth performance and partial anti-oxidative capacity in tilapia. After oxidative damage, RBE pretreatments were able to signally reduce the higher serum aminotransferases, alkaline phosphatase (AKP) and liver necrosis. In serum and liver, the abnormal lipid peroxidation level and antioxidant status induced by H2O2 injection were restored by RBE treatments. Furthermore, RBE treatments activated erythroid 2-related factor 2 (Nrf2) signaling pathway, which promoted the gene expression of heme oxygenase 1 (HO-1), NAD(P) H:quinone oxidoreductase 1 (NQO-1), glutathione-S-transferase (GST) and catalase (CAT). Meanwhile, RBE treatments reduced inflammatory response by inhibiting TLRs-MyD88-NF-κB signaling pathway, accompanied by the lower interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) and IL-8 mRNA levels. In addition, RBE treatments upregulated complement (C3) gene expression and downregulated heat shock protein (HSP70) gene expression. In conclusion, the current study suggested that RBE pretreatments protected against H2O2-induced oxidative damage in tilapia. The beneficial activity of RBE may be due to the modulation of Nrf2/ARE and TLRs-Myd88-NF-κB signaling pathway.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Cíclidos/metabolismo , Proteínas de Peces/genética , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Proteínas de Peces/metabolismo , Hígado/efectos de los fármacos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/química , Distribución Aleatoria , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
13.
Front Physiol ; 10: 868, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31333503

RESUMEN

Copper/zinc superoxide dismutase (Cu/Zn-SOD) plays critical roles in protecting cells and tissues against oxidative damage. Excessive copper ions (Cu2+) in water can damage the cells of aquatic organisms, leading to impaired growth and development and reduced antioxidant defenses. Many regulatory factors control the response to excess Cu2+. Among them, microRNAs (miRNAs) are important small RNAs that regulate the expression of their target genes and participate in the oxidative stress response. In the present study, we used bioinformatics and dual luciferase reporter gene analyses to demonstrate that the miR-489-3p of hybrid yellow catfish (Pelteobagrus fulvidraco♀ × P. vachelli♂) binds to the 3'-untranslated region (UTR) of its target gene, which encodes a Cu/Zn-SOD. The regulatory relationship between this miRNA and its target gene Cu/Zn-SOD was analyzed using qRT-PCR and luciferase activity assays. We also investigated the effect of the loss of miR-489-3p expression on the oxidative stress response of hybrid yellow catfish exposed to Cu2+. The Cu/Zn-SOD 3'UTR region was found to be fully complementary to positions 2-9 of the 5'-end seed region of miR-489-3p. The miR-489-3p expression levels were negatively related to Cu/Zn-SOD expression. Silencing of miR-489-3p up-regulated Cu/Zn-SOD expression in the liver and gill tissues, increased activities of SOD and catalase, and reduced the malondialdehyde content. This study is the first to demonstrate that miR-489-3p targets Cu/Zn-SOD to mediate the oxidative response to metal stress. These findings provide a theoretical basis for further studies on the response to oxidative stress caused by metals in cultured fish, and provide an experimental basis for the management of the culture environment.

14.
Fish Shellfish Immunol ; 92: 395-404, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31226419

RESUMEN

Vitamin E plays an important role in maintaining normal metabolism and physiological functions in animals. The health of fish fingerlings directly affects the rate of disease incidence in adult fish, and healthy fingerlings ultimately result in better breeding outcomes for cultured fish. To date, no previous studies have focused on the effects vitamin E deficiency on tilapia at the fingerling stage. In this study, we investigated the effects of dietary vitamin E on the growth, fat metabolism, antioxidant capacity, and inflammatory response of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) fingerlings. Vitamin E at different concentrations (0, 20, 40, 80, 160, and 320 mg/kg) was added to the diet and GIFT were fed for 55 days. Then, the GIFT were intraperitoneally injected with Streptococcus iniae and tested for infection. Vitamin E deficiency decreased growth and increased the food conversion ratio of GIFT fingerlings. Vitamin E deficiency also reduced the white blood cell count, increased hematocrit and hemoglobin contents in the blood, increased serum aspartate aminotransferase and alanine aminotransferase activities, and increased liver stress (P < 0.05). Vitamin E deficiency inhibited fat metabolism, down-regulated the expression of genes encoding lipoprotein lipase and heart-type and liver-type fatty acid-binding proteins, and increased serum total protein and fat deposition. Vitamin E deficiency significantly decreased superoxide dismutase, glutathione peroxidase, and catalase activities, increased malondialdehyde content, and caused oxidative damage. Vitamin E deficiency also up-regulated the expression of genes encoding interleukin 1ß and tumor necrosis factor α in the head kidney, and stimulated a pro-inflammatory response. Overall, vitamin E deficiency inhibited growth, impaired fat metabolism, and disrupted the inflammatory response of GIFT fingerlings, whereas vitamin E supplementation in the diet reversed these negative effects. The diets with high concentrations of vitamin E (160-320 mg/kg) led to vitamin E accumulation in the fish tissues and rapid activation of the inflammatory response and antioxidant capacity in GIFT fingerlings exposed to S. iniae.


Asunto(s)
Antioxidantes/metabolismo , Cíclidos/inmunología , Enfermedades de los Peces/inmunología , Inflamación/inmunología , Metabolismo de los Lípidos , Vitamina E/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Metabolismo de los Lípidos/efectos de los fármacos , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/veterinaria , Streptococcus iniae/fisiología , Vitamina E/administración & dosificación , Vitaminas/administración & dosificación , Vitaminas/metabolismo
15.
Fish Physiol Biochem ; 44(3): 747-768, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29603076

RESUMEN

Fatty liver is an increasingly serious disease of fish in aquaculture. However, the mechanisms responsible for the occurrence of fatty liver remain unclear, and no effective methods for the prevention and treatment of this disease have yet been found. In the present study, we aimed to develop an in vitro model of hepatocyte injury using oleic acid as hepatotoxicant and evaluate the protective effects of Rhizoma Alismatis extract (RAE) in Jian carp using this model. Primary hepatocytes from Jian carp were isolated and purified and cultured in vitro. The result indicated that 0.4 mmol L-1 oleic acid and 48 h could be the optimal conditions to induce hepatocyte injury model in cultured hepatocytes. Hepatocytes were exposed to oleic acid, followed by the addition of RAE at 0, 1, 5, 10, 20, or 50 µg mL-1. The hepatocytes and supernatant were then analyzed. RAE suppressed oleic acid-induced elevations in aspartate aminotransferase, alanine aminotransferase, triglycerides, total cholesterol, lactate dehydrogenase, alkaline phosphatase, cholinesterase, malondialdehyde, γ-glutamyl transferase, cytochrome P450 1A, cytochrome P450 2E1, liver-type fatty acid binding protein, free fatty acid, fatty acid synthetase, and tumor necrosis factor-α (P < 0.01 or P < 0.05); reduced protein levels of cytochrome P450 1A, nuclear factor (NF)-κB p65, and NF-κB c-Rel; and inhibited cytochrome P4503A, NF-κB c-Rel, nuclear factor erythroid-related factor 2, peroxisome proliferator-activated receptor-α, and cytochrome P4501A mRNA levels. In conclusion, RAE exhibited a protective effect against hepatocyte injury in Jian carp. Further in vivo studies are needed to provide more evidence for the use of RAE as a hepatoprotective agent for the treatment of hepatocyte injury.


Asunto(s)
Alisma , Hepatocitos/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Carpas/genética , Carpas/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado Graso/metabolismo , Hígado Graso/veterinaria , Enfermedades de los Peces/metabolismo , Expresión Génica/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , L-Lactato Deshidrogenasa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , FN-kappa B/metabolismo , Ácido Oléico , Rizoma , Transaminasas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , gamma-Glutamiltransferasa/metabolismo
16.
Gigascience ; 6(6): 1-6, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28444302

RESUMEN

Background: The lined seahorse, Hippocampus erectus , is an Atlantic species and mainly inhabits shallow sea beds or coral reefs. It has become very popular in China for its wide use in traditional Chinese medicine. In order to improve the aquaculture yield of this valuable fish species, we are trying to develop genomic resources for assistant selection in genetic breeding. Here, we provide whole genome sequencing, assembly, and gene annotation of the lined seahorse, which can enrich genome resource and further application for its molecular breeding. A total of 174.6 Gb (Gigabase) raw DNA sequences were generated by the Illumina Hiseq2500 platform. The final assembly of the lined seahorse genome is around 458 Mb, representing 94% of the estimated genome size (489 Mb by k-mer analysis). The contig N50 and scaffold N50 reached 14.57 kb and 1.97 Mb, respectively. Quality of the assembled genome was assessed by BUSCO with prediction of 85% of the known vertebrate genes and evaluated using the de novo assembled RNA-seq transcripts to prove a high mapping ratio (more than 99% transcripts could be mapped to the assembly). Using homology-based, de novo and transcriptome-based prediction methods, we predicted 20 788 protein-coding genes in the generated assembly, which is less than our previously reported gene number (23 458) of the tiger tail seahorse ( H. comes ). We report a draft genome of the lined seahorse. These generated genomic data are going to enrich genome resource of this economically important fish, and also provide insights into the genetic mechanisms of its iconic morphology and male pregnancy behavior.


Asunto(s)
Mapeo Contig/métodos , Genoma , Análisis de Secuencia de ADN/métodos , Smegmamorpha/genética , Animales , Acuicultura , China , Tamaño del Genoma , Anotación de Secuencia Molecular , Filogenia , Selección Artificial
17.
Fish Shellfish Immunol ; 64: 49-55, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28279789

RESUMEN

Dietary supplementation with rutin may have some pharmacological qualities including anti-inflammatory effects. Kupffer cell activation resulted in increased transcription of pro- and anti-inflammatory cytokines. The main purpose of this study was to investigate the pro- and anti-inflammatory activities in juvenile freshwater tilapia, Oreochromis niloticus, in response to 0.1 or 0.3 g/kg dietary supplementation of rutin. Results showed that hepatic IgM, anti-inflammatory-cytokines, and pro-inflammatory cytokines were significantly decreased in groups treated with high doses of rutin. Hepatic IgM and anti-inflammatory cytokines (IL-10 and IFN-γ) transcripts were significantly decreased, whereas the transcripts of the pro-inflammatory cytokines, TNFα and IL-1ß were significantly decreased, whereas IL-8 was significantly increased. The number of Kupffer cells in rutin-treated groups was significantly decreased, and scanning electron micrographs showed that rutin enriched the number of gut microvilli and secretion pits. With the phenomena of cell apoptosis occurred in the rutin groups, the present study demonstrated that optimum levels of rutin may be beneficial but excessive level may cause liver impairment, which may be absorbed by the gut and then transported to the liver.


Asunto(s)
Antiinflamatorios/inmunología , Cíclidos/inmunología , Citocinas/metabolismo , Suplementos Dietéticos , Proteínas de Peces/metabolismo , Rutina/inmunología , Alimentación Animal/análisis , Animales , Antiinflamatorios/administración & dosificación , Dieta/veterinaria , Suplementos Dietéticos/análisis , Hígado/inmunología , Distribución Aleatoria , Rutina/administración & dosificación
18.
BMC Genomics ; 18(1): 190, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28219342

RESUMEN

BACKGROUND: Genetically improved farmed tilapia (GIFT, Oreochromis niloticus) are susceptible to infection by Streptococcus iniae when maintained in modern intensive culture systems. GIFT are commercially important fishes that are cultured widely in southern China. The role of microRNAs (miRNAs) in the regulatory response of GIFT to S. iniae infection has been underestimated and has not yet been well studied. Head kidney has an important immune function in teleost fishes. The main aim of this study was to determine the possible function of miRNAs in head kidney of S. iniae-infected GIFT. MiRNAs are small, non-coding RNAs that regulate gene expression by binding to the 3'-untranslated regions of their target mRNAs. MiRNAs are known to regulate immune-regulated signaling and inflammatory response pathways. RESULTS: High-throughput deep sequencing of two libraries (control group [CO] and infected group [IN]) of RNA extracted from GIFT head kidney tissues generated 12,089,630 (CO) and 12,624,975 (IN) clean reads. Bioinformatics analysis identified 1736 and 1729 conserved miRNAs and 164 and 165 novel miRNAs in the CO and IN libraries, respectively. Three miRNAs (miR-310-3p, miR-92, and miR-127) were found to be up-regulated and four miRNAs (miR-92d-3p, miR-375-5p, miR-146-3p, and miR-694) were found to be down-regulated in the S. iniae-infected GIFT. The expressions of these miRNAs were verified by quantitative real-time PCR. RNAhybrid and TargetScan were used to identify complementary miRNA and mRNA target sites, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used to annotate and predict potential downstream regulation of biological pathways. Seven target genes, which encode immune-related proteins (complement C3, cytidine deaminase, regulator of G-protein Rgs22, mitogen-activated protein kinase Mapk1, metabotropic glutamate receptorm GluR8, calcium-sensing receptor CaSR, and microtubule-associated protein Map1S) were predicted to play crucial roles in the GIFT response to S. iniae infection. CONCLUSIONS: S. iniae outbreaks have hindered the development of the tilapia industry in China. Understanding the miRNA transcriptome of S. iniae-infected GIFT is important for exploring the immune responses regulated by miRNAs as well as for studying novel regulated networks to prevent and treat S. iniae infections in the future.


Asunto(s)
Perfilación de la Expresión Génica , MicroARNs/genética , MicroARNs/fisiología , Streptococcus iniae/fisiología , Tilapia/genética , Tilapia/microbiología , Animales , Análisis por Conglomerados , MicroARNs/efectos de los fármacos , MicroARNs/metabolismo , Tilapia/embriología
19.
Fish Physiol Biochem ; 43(4): 987-997, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28236008

RESUMEN

Transferrin (Tf) plays an important function in iron homeostasis and metabolism of organisms. In this study, we identified and characterized the Tf gene in Megalobrama amblycephala and evaluated its expression in basal conditions as well as after iron overload and experimental infection with Aeromonas hydrophila. Furthermore, we studied the iron binding properties of recombinant Tf. The full-length M. amblycephala Tf complementary DNA (cDNA) (GenBank accession no.: KX698308) of 2245 bp was cloned and contained a 1953 bp open reading frame (ORF) encoding 650 amino acid residues and flanked by a 68 bp 5' and a 204 bp 3' untranslated regions (UTR). Predicted conservative structure illustrated that M. amblycephala Tf consisted of two conservative Tf domains. Amino acid sequence alignment revealed that M. amblycephala Tf had high similarity with that of cyprinids deposited in Genbank, and phylogenetic analysis showed that M. amblycephala Tf clustered with Ctenopharyngodon idella and Hypophthalmichthys molitrix. Tissue expression pattern analyses demonstrated that the liver was the main Tf mRNA expressing organ, being significantly higher than other tissues (p < 0.05). In the liver, Tf mRNA expression in fish artificially injected with the pathogenic bacteria A. hydrophila was significantly upregulated, reaching a peak at 12 h post injection (hpi) and then decreasing afterward. The expression in FeCl3-injected fish showed a similar tendency, but reached a peak at 8 hpi. Meanwhile, fish serum iron significantly decreased following A. hydrophila injection, but increased to peak at 4 hpi and then decreased in FeCl3-injected fish. The recombinant M. amblycephala Tf showed iron binding capacity using CAS analysis. These results are helpful to understand the structure and regulation of expression of Tf, as well as the specific function of Tf for both immune responses and iron homeostasis.


Asunto(s)
Aeromonas hydrophila , Clonación Molecular , Regulación de la Expresión Génica/fisiología , Hierro/farmacología , Perciformes/metabolismo , Transferrina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/metabolismo , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Transferrina/genética
20.
Fish Physiol Biochem ; 41(5): 1321-32, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26109009

RESUMEN

The current study investigated the effects of dietary Aloe vera on plasma lipid profile status, antioxidant, and hepatoprotective enzyme activities of GIFT-tilapia juveniles under Streptococcus iniae challenge. Five dietary groups were designed including a control and 100 % Aloe powder incorporated into a tilapia feed at 0.5, 1, 2, and 4 %/kg feed, which were administered for 8 weeks. Fish fed dietary Aloe at 4 %/kg feed significantly reduced in total cholesterol, while triacylglycerol reduced (P < 0.05) in those fed 0.5, 2, and 4 % Aloe/kg feed compared to unsupplemented ones. High-density lipoprotein was significantly elevated in fish fed 0.5 and 1 % Aloe/kg feed compared to unsupplemented ones, and no significant changes (P > 0.05) were noted in low-density lipoprotein among test groups. Furthermore, high activities of superoxide dismutase, catalase, and glutathione peroxide in liver tissues were observed in Aloe-supplemented fish compared to unsupplemented ones, before and after S. iniae challenge (7.7 × 10(6) CFU cells/mL). Variations were also noted in malondialdehyde activity throughout the trial, but no significant difference (P > 0.05) was observed between groups. Meanwhile, Aloe-supplemented fish reduced serum aspartate and alanine aminotransferase (AST and ALT) activities before and after challenge. Based on the second-order polynomial regression analysis, dietary Aloe inclusion levels less than or equal to 1.88, 1.86, and 2.79 %/kg feed were determined to be suitable in improving plasma lipid profile status, antioxidant, and hepatoprotective enzyme activities in GIFT-tilapia in this study, respectively. Thus, A. vera extracts may be recommended as a tilapia feed supplement to enhance fish antioxidant and hepatoprotective capacities, especially during disease outbreaks.


Asunto(s)
Aloe , Cíclidos , Dieta/veterinaria , Enfermedades de los Peces/microbiología , Infecciones Estreptocócicas/veterinaria , Streptococcus/clasificación , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Suplementos Dietéticos , Enfermedades de los Peces/tratamiento farmacológico , Lípidos/sangre , Hígado/enzimología , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA