Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Psychiatry Res ; 334: 115789, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452495

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a complex environmental etiology involving maternal risk factors, which have been combined with machine learning to predict ASD. However, limited studies have considered the factors throughout preconception, perinatal, and postnatal periods, and even fewer have been conducted in multi-center. In this study, five predictive models were developed using 57 maternal risk factors from a cohort across ten cities (ASD:1232, typically developing[TD]: 1090). The extreme gradient boosting model performed best, achieving an accuracy of 66.2 % on the external cohort from three cities (ASD:266, TD:353). The most important risk factors were identified as unstable emotions and lack of multivitamin supplementation using Shapley values. ASD risk scores were calculated based on predicted probabilities from the optimal model and divided into low, medium, and high-risk groups. The logistic analysis indicated that the high-risk group had a significantly increased risk of ASD compared to the low-risk group. Our study demonstrated the potential of machine learning models in predicting the risk for ASD based on maternal factors. The developed model provided insights into the maternal emotion and nutrition factors associated with ASD and highlighted the potential clinical applicability of the developed model in identifying high-risk populations.


Asunto(s)
Trastorno del Espectro Autista , Embarazo , Femenino , Humanos , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/etiología , Vitaminas , Familia , Factores de Riesgo , Aprendizaje Automático
2.
J Sci Food Agric ; 104(3): 1408-1419, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37782057

RESUMEN

BACKGROUND: Astaxanthin (AST) is approved by the US Food and Drug Administration (FDA) as a safe dietary supplement for humans. As a potent lipid-soluble keto-carotenoid, it is widely used in food, cosmetics, and the pharmaceutical industry. However, its low solubility limits its powerful biological activity and its application in these fields. This study aims to develop a delivery system to address the low solubility and bioavailability of AST and to enhance its antioxidant capacity. RESULTS: Astaxanthin-loaded composite micelles were successfully prepared via coaxial electrospray technology. Astaxanthin existed in the amorphous state in the electro-sprayed formulation with an approximate particle size of 186.28 nm and with a polydispersity index of 0.243. In this delivery system, Soluplus and copovidone (PVPVA 64) were the main polymeric matrix for AST, which then released the drug upon contact with aqueous media, resulting in an overall increase in drug solubility and a release rate of 94.08%. Meanwhile, lecithin, and Polyethylene glycol-grafted Chitosan (PEG-g-CS) could support the absorption of AST in the gastrointestinal tract, assisting transmembrane transport. The relative bioavailability reached about 308.33% and the reactive oxygen species (ROS) scavenging efficiency of the formulation was 44.10%, which was 1.57 times higher than that of free astaxanthin (28.10%) when both were at the same concentration level based on astaxanthin. CONCLUSION: Coaxial electrospray could be applied to prepare a composite micelles system for the delivery of poorly water-soluble active ingredients in functional food, cosmetics, and medicine. © 2023 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Micelas , Humanos , Portadores de Fármacos , Disponibilidad Biológica , Solubilidad , Tamaño de la Partícula , Agua , Administración Oral
3.
Foods ; 12(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37893748

RESUMEN

Browning is one of the main phenomena limiting the production of fresh-cut sweetpotatoes. This study investigated the anti-browning effect of citrus peel extracts and the key components and modes of action associated with browning in fresh-cut sweetpotatoes. Five different concentrations of citrus peel extract (1, 1.5, 2, 2.5 and 3 g/L) were selected to ensure storage quality; and the physical and chemical properties of fresh-cut sweetpotato slices were analysed. A concentration of 2 g/L of citrus peel extract significantly inhibited the browning of fresh-cut sweetpotatoes. The results showed that the browning index and textural characteristics of fresh-cut sweetpotatoes improved significantly after treatment with citrus peel extract; all the citrus peel extract solutions inhibited browning to some extent compared to the control. In addition; LC-IMS-QTOFMS analysis revealed a total of 1366 components in citrus peel extract; the evaluation of citrus peel extract monomeric components that prevent browning in fresh-cut sweetpotato indicated that the components with better anti-browning effects were citrulloside, hesperidin, sage secondary glycosides, isorhamnetin and quercetin. The molecular docking results suggest that citrullosides play a key role in the browning of fresh-cut sweetpotatoes. In this study, the optimum amount of citrus peel extract concentration was found to be 2 g/L.

4.
AAPS PharmSciTech ; 24(6): 146, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380936

RESUMEN

Emodin is applied as an antitumor drug in many tumor therapies. However, its pharmacology performances are limited due to its low solubility. Herein, we fused erythrocyte and macrophage to form a hybrid membrane (EMHM) and encapsulated emodin to form hybrid membrane-coated nanoparticles. We employed glycyrrhizin to increase the solubility of emodin first and prepared the hybrid membrane nanoparticle-coated emodin and glycyrrhizin (EG@EMHM NPs) which exhibited an average particle size of 170 ± 20 nm and encapsulation efficiency of 98.13 ± 0.67%. The half-inhibitory concentrations (IC50) of EG@EMHM NPs were 1.166 µg/mL, which is half of the free emodin. Based on the photosensitivity of emodin, the reactive oxygen species (ROS) results disclosed that ROS levels of the photodynamic therapy (PDT) section were higher than the normal section (P < 0.05). Compared to the normal section, PDT-mediated EG@EMHM NPs could induce an early stage of apoptosis of B16. The western blot and flow cytometry results verified that PDT-mediated EG@EMHM NPs can significantly improve the solubility of emodin and perform a remarkably antitumor effect on melanoma via BAX and BCL-2 pathway. The application of the combined chemical and PDT therapy could provide an improving target therapy for cutaneous melanoma and also may offer an idea for other insoluble components sources of traditional Chinese medicine. Schematic of EG@EMHM NPs formulation.


Asunto(s)
Emodina , Melanoma , Neoplasias Cutáneas , Humanos , Terapia Fototérmica , Emodina/farmacología , Ácido Glicirrínico/farmacología , Especies Reactivas de Oxígeno
5.
Int J Pharm ; 641: 123039, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37225026

RESUMEN

Bisdemethoxycurcumin (BDMC) is the main active ingredient that is isolated from Zingiberaceae plants, wherein it has excellent anti-tumor effects. However, insolubility in water limits its clinical application. Herein, we reported a microfluidic chip device that can load BDMC into the lipid bilayer to form BDMC thermosensitive liposome (BDMC TSL). The natural active ingredient glycyrrhizin was selected as the surfactant to improve solubility of BDMC. Particles of BDMC TSL had small size, homogenous size distribution, and enhanced cultimulative release in vitro. The anti-tumor effect of BDMC TSL on human hepatocellular carcinomas was investigated via 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, live/dead staining, and flowcytometry. These results showed that the formulated liposome had a strong cancer cell inhibitory, and presented a dose-dependent inhibitory effect on migration. Further mechanistic studies showed that BDMC TSL combined with mild local hyperthermia could significantly upregulate B cell lymphoma 2 associated X protein levels and decrease B cell lymphoma 2 protein levels, thereby inducing cell apoptosis. The BDMC TSL that was fabricated via microfluidic device were decomposed under mild local hyperthermia, which could beneficially enhance the anti-tumor effect of raw insoluble materials and promote translation of liposome.


Asunto(s)
Curcumina , Hipertermia Inducida , Humanos , Liposomas , Curcumina/farmacología , Microfluídica , Línea Celular Tumoral , Diarilheptanoides , Proteínas Proto-Oncogénicas c-bcl-2
6.
J Nat Prod ; 86(2): 346-356, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36700552

RESUMEN

Ginkgo biloba, as a medicinal plant in both traditional and western medicine, emerged as a potential therapeutic agent for the management of a variety of diseases, but ginkgo biflavones (bilobetin, isoginkgetin, and ginkgetin) application in cancer therapy and underlying mechanisms of action remained elusive. In the present study, we identified ginkgo biflavones as potential p53 activators that could enhance p53 protein expression level by inhibiting MDM2 protein expression. At the same time, they induced cell death independent of p53 transcriptional activity. Moreover, ginkgetin was a standout among ginkgo biflavones that reduced the survival of HCT-116 cells by induction of apoptosis and G2/M phase arrest. Furthermore, ginkgo biflavones induced ROS generation significantly, which resulted in ferroptosis. Finally, we provide evidence that ginkgetin strengthened the antitumor effect of fluorouracil (5-FU) in the HCT-116 colon cancer xenograft model. To sum up, ginkgo biflavones represent a new class of p53 activator that depends on the p53 wild-type status and warrants further exploration as potential anticancer agents.


Asunto(s)
Ginkgo biloba , Plantas Medicinales , Humanos , Proteína p53 Supresora de Tumor , Muerte Celular , Apoptosis
7.
J Food Biochem ; 46(1): e14007, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34811762

RESUMEN

A liposome of Licochalcone A (LCA-Liposomes) was purposively prepared to ameliorate the low in vivo availability and efficacy of LCA. Physical characterization of LCA-Liposomes was carried out mainly by determining particle size, morphology, zeta potential (Z-potential), and efficiency of LCA encapsulation (EE) via appropriate techniques. Also, the rate of LCA release in vitro and distribution in vivo (plasma and tissues) was evaluated. Evaluation of the antirenal activity of LCA-liposomes was carried out by establishing chronic renal failure (CRF) model in mice through intragastric administration of adenine (200 mg/kg) and subsequent determination of biochemical parameters and examination of tissue sections. Respectively, the mean size of liposomal particles, Z-potential and EE of LCA-Liposomes were 71.78 ± 0.99 nm, -38.49 ± 0.06 mV, and 97.67 ± 1.72%. Pharmacokinetic and tissue distribution studies showed that LCA-Liposomes could improve the availability of LCA in the blood and tissues, whereas during pharmacodynamics studies, the liposome effectively improved the therapeutic effect of LCA on CRF mice by potentially protecting the renal tissues while exhibiting antioxidant activity. In conclusion, LCA-Liposomes could effectively improve the bioavailability of LCA and provide platform for the development of LCA-related functional products. PRACTICAL APPLICATIONS: As a traditional Chinese medicine, licorice is widely used in food and pharmaceutical industries. LCA is a small molecule flavonoid extracted from the root of licorice. In this study, LCA was loaded on liposome carriers, which significantly improved the water solubility and oral bioavailability, and proved that LCA-Liposomes have certain therapeutic effects on chronic renal failure, thereby providing a basis for the development of LCA into drugs or functional food in the future.


Asunto(s)
Chalconas , Liposomas , Animales , Disponibilidad Biológica , Chalconas/farmacología , Liposomas/química , Ratones , Solubilidad
8.
Front Pharmacol ; 12: 629968, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967763

RESUMEN

Osteolytic bone disease is a condition of imbalanced bone homeostasis, characterized mainly by excessive bone-resorptive activity, which could predispose these populations, such as the old and postmenopausal women, to developing high risk of skeletal fragility and fracture. The nature of bone homeostasis is the coordination between the osteoblasts (OBs) and osteoclasts (OCs). Abnormal activation of osteoclasts (OCs) could compromise the bone homeostasis, constantly followed by a clutch of osteolytic diseases, including postmenopausal osteoporosis, osteoarthritis, and rheumatoid arthritis. Thus, it is imperatively urgent to explore effective medical interventions for patients. The traditional Chinese medicine (TCM) gamabufotalin (CS-6) is a newly identified natural product from Chansu and has been utilized for oncologic therapies owing to its good clinical efficacy with less adverse events. Previous study suggested that CS-6 could be a novel anti-osteoporotic agent. Nevertheless, whether CS-6 suppresses RANK-(receptor activator of nuclear factor-κ B ligand)/TRAF6 (TNF receptor-associated factor 6)-mediated downstream signaling activation in OCs, as well as the effects of CS-6 on OC differentiation in vivo, remains elusive. Therefore, in this present study, we aimed to explore the biological effects of CS-6 on osteoclastogenesis and RANKL-induced activation of related signaling pathways, and further to examine the potential therapeutic application in estrogen-deficient bone loss in the mice model. The results of in vitro experiment showed that CS-6 can inhibit RANKL-induced OC formation and the ability of bone resorption in a dose-dependent manner at both the early and late stages of osteoclastogenesis. The gene expression of OC-related key genes such as tartrate-resistant acid phosphatase (TRAP), CTSK, DC-STAMP, MMP9, and ß3 integrin was evidently reduced. In addition, CS-6 could mitigate the systemic estrogen-dependent bone loss and pro-inframammary cytokines in mice in vivo. The molecular mechanism analysis suggested that CS-6 can suppress RANKL/TRAF6-induced early activation of NF-κB and ERK/MAPK signaling pathways, which consequently suppressed the transcription activity of c-Fos and NFATc1. Taken together, this present study provided ample evidence that CS-6 has the promise to become a therapeutic candidate in treating osteolytic conditions mediated by elevated OC formation and bone resorption.

9.
Biomed Res Int ; 2020: 5439853, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32090097

RESUMEN

Glycyrrhizae Radix et Rhizoma (GRER) has been used as a medicinal plant and dietary supplements for its beneficial effect in immunomodulatory effects. Sulfur fumigation (SF) processing was widely used in the storage and maintenance of Chinese medicine because of its convenience and cheapness. However, the disadvantage of SF has been reported, but the systematic study of SF on GRER was deficient. In this paper, the active ingredients, sulfur-fumigated products, immunomodulatory effect, and liver injury of SF-GRER were studied. After SF, the liquiritin decreased from 4.49 ± 0.03 mg/g to 3.94 ± 0.08 mg/g (P < 0.01). Compared with the NSF-GRER group, the SF-GRER group showed a decreased immunoregulation in the thymus index, spleen index, and serum IL-6 and SOD levels (P < 0.05). After 2 weeks of continuous intragastric administration of SF-GRER in healthy mice, the level of serum aspartate aminotransferase (AST) significantly increased (P < 0.05) and the area of liver lesion significantly increased compared with the NSF-GRER (P < 0.05) group. The sulfonated products (m/z, 631.13) corresponding to liquiritin apioside (m/z, 551.17) and isoliquiritin apioside (m/z, 551.17) were screened out in SF-GRER by using UPLC-Orbitrap-MS. The sulfonated products provided in this paper were discovered for the first time and could be powerfully applied for the identification of SF-GRER. SF destroyed the chemical composition of GRER, inhibited immunoregulation, and induced liver injury. The feasibility of this processing method needs to be reconsidered.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Fumigación , Terapia de Inmunosupresión , Hígado/lesiones , Azufre/química , Animales , Medicamentos Herbarios Chinos/química , Flavanonas/farmacología , Glucósidos/farmacología , Glycyrrhiza , Factores Inmunológicos/farmacología , Hígado/efectos de los fármacos , Hígado/fisiopatología , Pruebas de Función Hepática , Masculino , Ratones , Reproducibilidad de los Resultados
10.
J Ethnopharmacol ; 249: 112377, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31707050

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The influence of sulfur fumigation processing on chemical profile, pharmacological activity and safety of Chinese herbs has attracted great attention. Panacis Quinquefolii Radix (PQR) was more widely used as edible and medicinal than Ginseng because of its tonifying effect and characteristic of not getting inflamed. The disadvantage of sulfur fumigated (SF) Ginseng has been reported, but the systematic study of SF-PQR is deficient and urgently needed. AIM OF THE STUDY: To systematically describe the influence of sulfur fumigation on chemical profile, characteristic products, immunoregulation and liver and kidney injury of PQR. MATERIALS AND METHODS: ICP-MS and HPLC-DAD were used to detect 11 inorganic elements and 3 ginsenosides, respectively. Principal component analysis (PCA) was used to distinguish SF-PQR from non-sulfur fumigated (NSF)-PQR by combining the content changes of inorganic elements and ginsenosides. UPLC/Orbitrap-MS was applied to screen the characteristic products (m/z) after sulfur fumigation. For the effectiveness and safety, male KM mice were used to compare the immunomodulatory effects of NSF-PQR or SF-PQR under both healty and cyclophosphamide induced immunosuppressive conditions by net growth rate of body weight, thymus and spleen indices, serum IL-6, SOD, BUN, AST levels, and HE staining of liver and kidney. RESULTS: Sulfur fumigation processing significantly reduced the contents of ginsenosides Rb1, Re and Rg1 with the elevation of inorganic elements in 20 batches PQR. Based on the scatter distribution of PCA, SF-PQR and NSF-PQR can be distinguished. According to the Rt, Precursor ion (m/z) and Product ion (m/z) produced by UPLC/Orbit trap-MS, R1-SO3 (m/z, 1059.53), Re-SO3 (m/z, 1025.55), Rg1-SO3 (m/z, 878.47), Ro-SO3 (m/z, 1035.32), Rb1-SO3 (m/z, 1179.58), and Rk3-SO3 (m/z, 745.40) could be confirmed as important markers for identifying SF-PQR. The effect of SF-PQR on reversing immunosuppression induced by cyclophosphamide was significantly reduced (P < 0.05) evidenced by the inhibition of net growth rate of body weight, immune organ index, IL-6 level and SOD activity. For healthy mice, SF-PQR not only failed to maintain the normal indexes, but also reduced the indexes to lower levels. After 2 weeks of continuous gastric administration, the abnormal liver and kidney functions in healthy mice were damaged and manifested by the increasing of BUN and AST levels, which was consistent with hepatic lesion area and renal tubular injury observed by HE staining. CONCLUSION: Sulfur fumigation processing not only reduced the immunomodulatory effect of PQR, but also brought the hidden danger in liver and kidney injury. The sulfonated products provided in this paper can be applied for the identification of SF-PQR accurately.


Asunto(s)
Fumigación/efectos adversos , Panax/química , Azufre/química , Animales , Cromatografía Líquida de Alta Presión/métodos , Fumigación/métodos , Ginsenósidos/aislamiento & purificación , Ginsenósidos/farmacología , Riñón/efectos de los fármacos , Riñón/patología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Espectrometría de Masas/métodos , Ratones , Raíces de Plantas , Análisis de Componente Principal
11.
Fitoterapia ; 138: 104348, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31470062

RESUMEN

Gastrodigenin rhamnopyranoside (GR) is a hepatoprotective compound that exists in Moringa oleifera seeds. However, the UPLC-MS/MS method for the determination of GR (in-vitro/in-vivo) is lacking clarification. Herein, this study established the UPLC-MS/MS technique, which was effective and sensitive for the investigation of the pharmacokinetics and biodistribution of GR in rats and mice. The separation was achieved with a Shim-pack XR-ODS III C18 column (2.0 × 75 mm, 1.6 µm) at 40 °C, while the mobile phase (Acetonitrile/0.1% Formic acid =12:82, v/v) was at an eluting rate of 0.2 mL/min. The Multiple Reaction Monitoring (MRM) was selected for quantification, i.e., m/z [M + HCOO]- 314.9 → 269 for GR and m/z [M + HCOO] - 182.85 → 137 for Tyrosol as the internal standard. The calibration curves were linearly ranged from 10 to 2500 ng/mL (r ≥ 0.999) with a lower-limit-of-quantification (LLOQ) of 10 ng/mL in the various biological samples (plasma, liver, heart, lung, spleen, brain, kidney). The intra- and inter-day precision was within 5%, while accuracy ranged from -11.4% - 8.33%. Recovery and matrix effect were with 80.32 to 101.31% and 90.36 to 103.76%, respectively, in a reasonable range. After oral and intravenous administration, GR was detected within 3 h but decreased rapidly in plasma, indicating fast elimination. Also, GR was quickly distributed in the various tissues, particularly in the kidney and spleen. The results demonstrated that the established UPLC-MS/MS method was highly linear, precise and accurate with the potential to be used for the quantitative analysis of GR in-vivo.


Asunto(s)
Glicósidos/farmacocinética , Moringa/química , Semillas/química , Animales , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Sustancias Protectoras/farmacología , Ratas , Ratas Sprague-Dawley , Distribución Tisular
12.
Chem Biodivers ; 16(7): e1900170, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31134745

RESUMEN

The tumor-suppressor function of p53 makes it an attractive drug target. Efforts were mostly put on stabilization of the functional p53 or reactivation of mutated p53. Previous studies have shown that small molecules targeting Loop1/Sheet3 (L1/S3) can reactivate the R175H-p53 and stabilize p53 in vitro. Since the L1/S3 pocket is shared by the mutate and the wild type (WT) p53, virtual screening is introduced to identify natural products targeting the L1/S3 of WT p53. Considering the high flexibility of Loop1, ensemble docking method is utilized for different clusters of the L1/S3. Seven conformations were chosen for docking. As one of the 181 selected candidates, torilin not only improved p53 activity, but also increased p21 protein expression level, which lies downstream of p53, therefore suppressing HCT116 cancer cell growth. Torilin may covalently bind to Cys124 of p53 by 2-methyl-2-butenal (2M2B) group, as torilin derivatives, which do not contain the 2M2B group, were not able to increase the p53 transcription activity. In conclusion, this study demonstrated that L1/S3 of WT-p53 is a druggable pocket, and torilin has a potential cytotoxicity through activating the p53 pathway.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Células HCT116 , Células HT29 , Humanos , Conformación Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/metabolismo
13.
Mar Drugs ; 17(5)2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31035725

RESUMEN

Melanoma is one of the most malignant and aggressive types of cancer worldwide. Fibroblast growth factor 2 (FGF2) is one of the critical regulators of melanoma angiogenesis and metastasis; thus, it might be an effective anti-cancer strategy to explore FGF2-targeting drug candidates from existing drugs. In this study, we evaluate the effect of the marine drug propylene glycol alginate sodium sulfate (PSS) on FGF2-mediated angiogenesis and invasion. The data shows that FGF2 selectively bound to PSS with high affinity. PSS inhibited FGF2-mediated angiogenesis in a rat aortic ring model and suppressed FGF2-mediated invasion, but not the migration of murine melanoma B16-F10 cells. The further mechanism study indicates that PSS decreased the expression of activated matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9), and also suppressed their activity. In addition, PSS was found to decrease the level of Vimentin in B16-F10 cells, which is known to participate in the epithelial-mesenchymal transition. Notably, PSS did not elicit any changes in cancer cell viability. Based on the results above, we conclude that PSS might be a potential drug to regulate the tumor microenvironment in order to facilitate the recovery of melanoma patients.


Asunto(s)
Alginatos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Melanoma Experimental/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Alginatos/uso terapéutico , Animales , Aorta/efectos de los fármacos , Organismos Acuáticos/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Membrana Corioalantoides , Evaluación Preclínica de Medicamentos , Transición Epitelial-Mesenquimal , Humanos , Laminaria/química , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/patología , Ratones , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control , Neovascularización Patológica/patología , Neovascularización Fisiológica/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Neoplasias Cutáneas/irrigación sanguínea , Neoplasias Cutáneas/patología , Microambiente Tumoral/efectos de los fármacos
14.
Zhongguo Zhong Yao Za Zhi ; 44(1): 40-47, 2019 Jan.
Artículo en Chino | MEDLINE | ID: mdl-30868810

RESUMEN

Affinity chromatography is characterized by its high specificity,high recovery rate and sensitivity,and it has been widely used in the selection of active ingredients of traditional Chinese medicine,separation and enrichment of low molecular weight sugars and protein peptides,research on mechanism of action and discovery of targets.This paper reviewed the application of affinity chromatography and its adsorption isotherm model,kinetic model and adsorption thermodynamic mechanism in the field of traditional Chinese medicine.This summarizes and provides thinking for comprehensive applications of affinity chromatography theory in the field of active ingredient screening,purification and medicine interaction.


Asunto(s)
Cromatografía de Afinidad , Medicamentos Herbarios Chinos/química , Medicina Tradicional China , Modelos Teóricos , Adsorción
15.
Zhongguo Zhong Yao Za Zhi ; 43(20): 4011-4018, 2018 Oct.
Artículo en Chino | MEDLINE | ID: mdl-30486524

RESUMEN

Hypolipidemic polysaccharides have notable activity and safety with a range of diverse sources. In this paper, the classification of hypolipidemic polysaccharides was carried out into polysaccharide sulfate, glycosaminoglycan, homopolysaccharide and heteropolysaccharide. The hypolipidemic activity mechanism and structure-activity relationship hypothesis of those polysaccharides in recent years were briefly reviewed therefore to provide references for the study and product development of polysaccharides.


Asunto(s)
Hipolipemiantes/química , Hipolipemiantes/farmacología , Polisacáridos/química , Polisacáridos/farmacología , Relación Estructura-Actividad
16.
Biosci Rep ; 38(6)2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30287506

RESUMEN

Monocyclic monoterpenes have been recognized as useful pharmacological ingredients due to their ability to treat numerous diseases. Limonene and perillyl alcohol as well as their metabolites (especially perillic acid and its methyl ester) possess bioactivities such as antitumor, antiviral, anti-inflammatory, and antibacterial agents. These therapeutic properties have been well documented. Based on the aforementioned biological properties of limonene and its metabolites, their structural modification and development into effective drugs could be rewarding. However, utilization of these monocyclic monoterpenes as scaffolds for the design and developments of more effective chemoprotective agents has not received the needed attention by medicinal scientists. Recently, some derivatives of limonene metabolites have been synthesized. Nonetheless, there have been no thorough studies on their pharmacokinetic and pharmacodynamic properties as well as their inhibition against isoprenylation enzymes. In this review, recent research progress in the biochemical significance of limonene and its metabolites was summarized with emphasis on their antitumor effects. Future prospects of these bioactive monoterpenes for drug design and development are also highlighted.


Asunto(s)
Diseño de Fármacos , Limoneno/uso terapéutico , Neoplasias/tratamiento farmacológico , Ciclohexenos/química , Ciclohexenos/metabolismo , Ciclohexenos/uso terapéutico , Humanos , Limoneno/química , Limoneno/metabolismo , Éteres Metílicos/química , Éteres Metílicos/metabolismo , Éteres Metílicos/uso terapéutico , Monoterpenos/química , Monoterpenos/metabolismo , Monoterpenos/uso terapéutico , Neoplasias/patología
17.
Int J Pharm ; 550(1-2): 24-34, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30125653

RESUMEN

[6]-Shogaol, an alkylphenol compound purified from the root and stem of ginger (Zingiber officinale), has attracted considerable interest due to its potential anticancer, antioxidative and antirheumatic properties. However, the oral bioavailability of [6]-shogaol has been severely limited because of its poor solubility. In this study, a significant quantity of high-purity [6]-shogaol (yield: 3.6%; purity: 98.65%) was extracted and encapsulated in solid lipid nanoparticles (SLNs) via high-pressure homogenization (encapsulation efficiency: 87.67%) to improve its solubility and oral bioavailability. The resulting [6]-shogaol-loaded solid lipid nanoparticles (SSLNs) were stable, homogeneous and well-dispersed. Its mean particle size and zeta potential were 73.56 ±â€¯5.62 nm and -15.2 ±â€¯1.3 mV, respectively. Importantly, the in vitro release profile and in vivo oral bioavailability of SSLNs were significantly improved compared with the free drug. Furthermore, the SSLNs could remarkably lower the uric acid level via inhibiting the activity of xanthine oxidase and reduce the production of interleukin-1ß (IL-1ß) and tumor necrosis factor (TNF-α) in the hyperuricemia/gouty arthritis rat model, when compared to the free [6]-shogaol. Collectively, SLNs could serve as a promising drug delivery system to improve the oral bioavailability of [6]-shogaol for effective treatment of gouty arthritis.


Asunto(s)
Catecoles/farmacocinética , Portadores de Fármacos , Supresores de la Gota/farmacocinética , Nanopartículas , Extractos Vegetales/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Catecoles/administración & dosificación , Sistemas de Liberación de Medicamentos , Gota/tratamiento farmacológico , Supresores de la Gota/administración & dosificación , Humanos , Lípidos , Masculino , Extractos Vegetales/administración & dosificación , Ratas Sprague-Dawley
18.
Int Immunopharmacol ; 62: 277-286, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30036771

RESUMEN

Two Epimedium-derived isomeric flavonoids, CIT and IT, had the therapeutic effect in osteopenic rats. However, it is difficult to expound their activity differences in anti-osteoporosis. This paper contrasted their anti-osteoporosis activity from the perspective of their affinity to OPG/RANKL protein targets. Molecular docking indicated that both of CIT and IT could interact with the hydrophobic pockets of OPG/RANKL, while CIT was easier and more stable to combine with RANKL. On the contrary, compared with CIT, IT was more inclined to combine with OPG and stay away from combining with RANKL. Subsequently, whether the interaction between isomeric flavonoids and OPG/RANKL targets promoted or suppressed bone resorption was undefined and which was validated by zebrafish embryo and ovariectomized rats in this paper. Compared with IT, the staining area and cumulative optical density of zebrafish skeleton were significantly increased after the treatment of CIT (0.1 µM, p < 0.05). Furthermore, CIT mainly reflected a more significant role in upregulating OPG (p < 0.05), downregulating RANKL (p < 0.05), reducing serum AKP and TRACP level (p < 0.05), enhancing bone biomechanical properties (p < 0.05), increasing bone mineral density (p < 0.05) and improving trabecular bone microarchitecture (p < 0.05) in osteoporotic rats. In conclusion, the combination of isomeric flavonoids (CIT/IT) and OPG/RANKL targets attenuated the excitation effects of OPG or RANKL on RANKL. Because CIT was more firmly combined with RANKL than IT, CIT had stronger anti-osteoporosis effect by inhibiting bone resorption.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Epimedium/química , Flavonoides/uso terapéutico , Osteoporosis/tratamiento farmacológico , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo , Animales , Densidad Ósea/efectos de los fármacos , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Femenino , Flavonoides/química , Flavonoides/aislamiento & purificación , Simulación del Acoplamiento Molecular , Osteoporosis/metabolismo , Osteoprotegerina/genética , Ovariectomía , Unión Proteica , Ligando RANK/genética , Ratas Sprague-Dawley , Esqueleto/efectos de los fármacos , Esqueleto/metabolismo , Estereoisomerismo , Pez Cebra
19.
World J Gastroenterol ; 23(30): 5530-5537, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28852312

RESUMEN

AIM: To investigate whether autophagic cell death is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells, and to explore the underlying mechanism. METHODS: Human hepatocellular carcinoma cells were treated with hyperthermia and ionizing radiation. MTT and clonogenic assays were performed to determine cell survival. Cell autophagy was detected using acridine orange staining and flow cytometric analysis, and the expression of autophagy-associated proteins, LC3 and p62, was determined by Western blot analysis. Intracellular reactive oxygen species (ROS) were quantified using the fluorescent probe DCFH-DA. RESULTS: Treatment with hyperthermia and ionizing radiation significantly decreased cell viability and surviving fraction as compared with hyperthermia or ionizing radiation alone. Cell autophagy was significantly increased after ionizing radiation combined with hyperthermia treatment, as evidenced by increased formation of acidic vesicular organelles, increased expression of LC3II and decreased expression of p62. Intracellular ROS were also increased after combined treatment with hyperthermia and ionizing radiation. Pretreatment with N-acetylcysteine, an ROS scavenger, markedly inhibited the cytotoxicity and cell autophagy induced by hyperthermia and ionizing radiation. CONCLUSION: Autophagic cell death is involved in hyperthermic sensitization of cancer cells to ionizing radiation, and its induction may be due to the increased intracellular ROS.


Asunto(s)
Autofagia/efectos de la radiación , Carcinoma Hepatocelular/radioterapia , Hipertermia Inducida , Neoplasias Hepáticas/radioterapia , Radiación Ionizante , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/patología , Supervivencia Celular/efectos de la radiación , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión al ARN/metabolismo
20.
Pharm Biol ; 54(10): 2320-8, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26986932

RESUMEN

Context Linalool (LL) is associated with numerous pharmacological activities. However, its poor solubility usually results in poor bioavailability, and further limited its applications. Objective To reduce volatilization and improve bioavailability of LL, linalool-loaded nanostructured lipid carriers (LL-NLCs) were prepared. Materials and methods LL-NLCs were prepared using high-pressure homogenization method and optimized via response surface methodology-central composite design, followed by characterization, including particle size (PS), zeta potential (ZP), transmission electron microscope (TEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and in vitro release study. Rats were administered 300 mg × kg (-) (1) LL with each preparation (LL-NLCs or LL) via oral gavage. Results LL-NLCs had a PS of 52.72 nm with polydispersity index of 0.172, and ZP of -16.0 mV. The encapsulation efficiency and drug loading gave 79.563 and 7.555%, respectively. The cumulative release of LL from free LL reached 51.414% at 180 min, while LL from LL-NLCs was 15.564%. All the pharmacokinetics parameters of LL-NLCs were better than those of LL, including Cmax (from 1915.45 to 2182.45 ng × mL (-) (1)), AUC0-t (from 76003.40 to 298948.46 ng × min × mL (-) (1)) and relative bioavailability (393.34%). The t1/2, MRT and tmax of LL-NLCs (110.50, 146.66 and 60 min) were also longer than that of LL (44.72, 45.66 and 40 min). Discussion and conclusion LL-NLCs were for the first time prepared and its oral administration in rats thoroughly investigated. LL-NLCs exhibited sustained release effect and increased absorption of LL. Therefore, these findings might provide a potential possibility for clinical application of LL.


Asunto(s)
Portadores de Fármacos , Lípidos/química , Monoterpenos/farmacocinética , Nanopartículas , Extractos Vegetales/farmacocinética , Monoterpenos Acíclicos , Administración Oral , Animales , Área Bajo la Curva , Disponibilidad Biológica , Preparaciones de Acción Retardada , Composición de Medicamentos , Intubación Gastrointestinal , Masculino , Modelos Biológicos , Monoterpenos/administración & dosificación , Monoterpenos/sangre , Monoterpenos/química , Extractos Vegetales/administración & dosificación , Extractos Vegetales/sangre , Extractos Vegetales/química , Ratas Sprague-Dawley , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA